ENT 305A: Programming exercises

Laurent Pfeiffer, Inria-Saclay

September 2023

Exercice 1 (Minimizing an unbounded function). Consider the problem

$$
\begin{equation*}
\inf _{(x, y) \in \mathbb{R}^{2}} f(x), \tag{P}
\end{equation*}
$$

where

$$
f:(x, y) \in \mathbb{R}^{2} \mapsto \frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x y+\frac{y^{2}}{2}-y+9
$$

Does problem (P) has a global solution? Calculate all stationary points of f. With the help of AMPL, try to minimize f, taking initial points more or less close to the stationary points.

Expected results.

Initialization of (x, y)	Result
$(0,0)$	unbounded (or badly scaled)
$(1,-1)$	$(1,-1)$
$(1.001,-1.001)$	$(2,-3)$
$(2,-3)$	$(2,-3)$
$(2.001,-3.001)$	$(2,-3)$

Exercice 2 (Projection on the simplex). Let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. Consider the problem:

$$
\inf _{(x, y) \in \mathbb{R}^{2}} \frac{1}{2}\left(\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}\right), \quad \text { subject to: } \quad\left\{\begin{array}{l}
x+y \leq 1 \\
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

Solve the problem graphically. In particular, calculate the solution for the following values of $\left(x_{0}, y_{0}\right)$:

$$
\left(x_{0}, y_{0}\right)=(1,1), \quad\left(x_{0}, y_{0}\right)=(0,2), \quad\left(x_{0}, y_{0}\right)=(-1,-1)
$$

For each case, check that the KKT conditions are satisfied. Solve the problem with AMPL for these different values of $\left(x_{0}, y_{0}\right)$.

Expected results.

$\left(x_{0}, y_{0}\right)$	Result	Lagrange multiplier
$(1,1)$	$(0.5,0.5)$	$(0.5,0,0)$
$(0,2)$	$(0,1)$	$(1,1,0)$
$(-1,-1)$	$(0,0)$	$(0,1,1)$

Exercice 3 (Polynomial interpolation). We consider a set of N measurements $\left(x_{i}, y_{i}\right)_{i=1, \ldots, N}$, where $x_{i} \in \mathbb{R}$ and $y_{i} \in \mathbb{R}$, for all $i=1, \ldots, N$. We aim at finding a heuristic relation between x_{i} and y_{i}, in the form of a second-order polynomial function:

$$
y_{i} \approx f\left(x_{i} ; a, b, c\right), \quad \text { where: } f(x ; a, b, c)=a x^{2}+b x+c .
$$

For this purpose, we consider the following least-square problem:

$$
\inf _{(a, b, c) \in \mathbb{R}^{3}} \sum_{i=1}^{N}\left(f\left(x_{i} ; a, b, c\right)-y_{i}\right)^{2} .
$$

Write an AMPL program for solving the problem with arbitrary values of N, x, and y. Solve the problem for the following values:

$$
N=21, \quad x_{i}=(i-1) / 20, \quad y_{i}=\exp \left(x_{i}\right)
$$

Optional: write a program computing a polynomial approximation of any order.
Expected results: $\quad a=0,84, b=0,85, c=1,01$.

Exercice 4 (Hanging chain). We consider a necklace, made of N pearls of identical mass, connected by a chain of negligible mass. The distance between two consecutive pearls is taken equal to 1 . The chain is hanging, suspended by its extremities. The resulting configuration is such that the total gravity energy is minimized.

The problem can be mathematically formulated as follows:

$$
\inf _{\substack{x \in \mathbb{R}^{N} \\
y \in \mathbb{R}^{N}}} \sum_{i=1}^{N} y_{i}, \quad \text { subject to : }\left\{\begin{array}{l}
\left\|\left(x_{i+1}, y_{i+1}\right)-\left(x_{i}, y_{i}\right)\right\|^{2} \leq 1, \quad \forall i=1, \ldots, N-1 \\
\left(x_{1}, y_{1}\right)=\left(x_{I}, y_{I}\right) \\
\left(x_{N}, y_{N}\right)=\left(x_{F}, y_{F}\right),
\end{array}\right.
$$

where $\left(x_{I}, y_{I}\right)$ and $\left(x_{F}, y_{F}\right)$ are given parameters.

1. Let $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ be a feasible point satisfying the KKT conditions. Is it a global solution to the problem?
2. Write a program with AMPL that allows to solve the problem for an arbitrary number of pearls N and arbitrary points $\left(x_{I}, y_{I}\right)$ and $\left(x_{F}, y_{F}\right)$, to be specified in a data file.

Expected results, with $\left(x_{I}, y_{I}\right)=(0,0),\left(x_{F}, y_{F}\right)=(6,0), N=20$.

i	1	2	3	4	5	6	7	8	9	10
$x(i)$	0	0,11	0,24	0,38	0,55	0,75	1,00	1,32	1,78	2,5
$y(i)$	0	$-0,99$	$-1,98$	$-2,97$	$-3,96$	$-4,94$	$-5,90$	$-6,85$	$-7,74$	$-8,44$

i	11	12	13	14	15	16	17	18	19	20
$x(i)$	3,5	4,21	4,67	4,99	5,24	5,44	5,61	5,75	5,88	6
$y(i)$	$-8,44$	$-7,74$	$-6,85$	$-5,90$	$-4,94$	$-3,96$	$-2,97$	$-1,98$	$-0,99$	0

Exercice 5 (Economic dispatch). A company must satisfy the energetic demand along the day, divided in $T=24$ time slots. The demand at time t is denoted L_{t} (with $t \in\{1, \ldots, T\}$). The company has n production units. The production of the unit i during the time slot t is denoted $P_{i, t}$ (with $i \in\{1, \ldots, n\}$).

The economic problem is modelled a follows:

- The production cost of unit i, at any time slot t, is given by

$$
C_{i}\left(P_{i, t}\right)=a_{i} P_{i, t}^{2}+b_{i} P_{i, t}+c_{i}
$$

- The production of the unit i, on the time slot t, is bounded from below and from above as follows:

$$
P_{i}^{\min } \leq P_{i, t} \leq P_{i}^{\max }
$$

- The variation of production of unit i, from the times slot $t-1$ to the time slot t, is also bounded from below and from above:

$$
R_{i}^{\min } \leq P_{i, t}-P_{i, t-1} \leq R_{i}^{\max }
$$

- The demand must be satisfied at all time slots:

$$
\sum_{i=1}^{n} P_{i, t} \geq L_{t}
$$

The values of the parameters $a_{i}, b_{i}, c_{i}, P_{i}^{\min }, P_{i}^{\max }, R_{i}^{\min }, R_{i}^{\max }$, and L_{t} are given below.

Unit i	a_{i}	b_{i}	c_{i}	$P_{i}^{\min }$	$P_{i}^{\max }$	$R_{i}^{\min }$	$R_{i}^{\max }$
1	0.12	14.8	89	28	200	-40	40
2	0.17	16.57	83	20	290	-30	30
3	0.15	15.55	100	30	190	-30	30
4	0.19	16.21	70	20	260	-50	50

Time slot t	1	2	3	4	5	6	7	8	9	10	11	12
Demand L_{t}	510	530	516	510	515	544	646	686	741	734	748	760

Time slot t	13	14	15	16	17	18	19	20	21	22	23	24
Demand D_{t}	754	700	686	720	714	761	727	714	618	584	578	544

1. List the parameters and optimization variables, indicate their dimension.
2. Solve the problem with AMPL. Is the result a global solution to the problem?
3. For each time slot, compute (with the help of AMPL) the augmentation of cost generated by a (small) augmentation of demand at time t.

Expected resuts (production, first five time steps).

Time \backslash Unit	1	2	3	4
1	166,191	112,105	130,452	101,252
2	172.565	116.605	135.552	105.278
3	168.103	113.455	131.982	102.46
4	166.191	112.105	130.452	101.252
5	167.784	113.23	131.727	102.258
\vdots	\vdots	\vdots	\vdots	\vdots

