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Exercice 6 (Logistic regression). A least-square problem is an optimization problem of the form

inf
x∈Rn

J(x), where: J(x) =

m∑
i=1

gi(x)2,

and where g : Rn → Rm is a given mapping.
Figure 1 contains data of the population of the United States from 1790 to 2000. You will find the corre-

sponding data file on the website of the class.

Year Population
1790 3.93
1800 5.31
1810 7.24
1820 9.64
1830 12.86
1840 17.06
1850 23.19
1860 31.44
1870 38.56
1880 50.19
1890 62.98

Year Population
1900 76.21
1910 92.23
1920 106.02
1930 123.20
1940 132.16
1950 151.33
1960 179.32
1970 203.30
1980 226.54
1990 248.71
2000 281.42

Figure 1: Population of the United States from 1790 to 2000, in millions

The following model, called logistic model is frequently used in population modelling:

P (t) =
p

1 + exp(−α(t− t0))
,

where p > 0, α > 0 and t0 ∈ R are three coefficients to be fixed.

1. Give an interpretation of the three coefficients. Draw a graph of P .

2. Formulate a least-square problem that allows to find out values of p, α and t0 such that the corresponding
time-function P models in a precise way the evolution of the american population.

3. Without appropriate initialization of the coefficients, AMPL may have difficulties to solve the problem
(which is not convex). Propose a method that allows to suitably initialize p, α, and t0.

4. Solve the problem with AMPL.

Solution: p = 440.834, α = 0.0216059, t0 = 1976.63.

Exercice 7 (Water distribution network). We consider a water distribution network, made of a reservoir
providing an agricultural area with water. The capacity of the reservoir (the maximal volume of water that can
be stocked) is 1950 m3, the minimal volume is 550 m3. The initial volume is 1500 m3.

The incoming flow (into the reservoir) varies over the year. It is denoted Q(t), where t = 1, . . . , 12 denotes
the month of the year. It is expressed in m3 in the following table:

t 1 2 3 4 5 6 7 8 9 10 11 12
Q(t) 386 346 416 713 1532 2000 1982 1431 780 476 450 420
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The available agricultural area amounts to Amax = 200 ha and can be divided into four cereals: cotton, wheat,
rice, alfalfa. The revenue generated by each cereal is given in the following table, in euro per ha and per year:

Cotton Wheat Rice Alfalfa
Revenue 3500 700 2205 500

The needs for water of each cereal are given below (in m3/ha), for each month of the year:

t 1 2 3 4 5 6 7 8 9 10 11 12
Cotton 3 3 3 2 4 5 5 4 5 0 0 0
Wheat 0 0 0 1 3 3 0 0 0.2 0 0 0
Rice 0 0 0 4.5 7 8 8 7 0.5 0 0 0

Alfalfa 0 0 0 0.5 2 3.5 3.5 2.5 0.5 0 0 0

Let R(t) denote the amount of water withdrawn from the reservoir during the month t. Let S(t) denote the
amount of water at the end on the month t. Only a part D(t) ≤ R(t) of the withdrawn water is allocated to
the agricultural area. Half of the allocated water gets lost and so the volume of water dedicated to the cultures
amounts to 0.5D(t). Finally, the volume of water in the reservoir at the end of the year must be greater or
equal to Sf = 1400 m3.

We look for the areas x1, x2, x3, and x4 of each cereal (in ha) which maximize the annual revenue generated
by their exploitation.

1. List the different optimization variables and parameters of the problem. Write the full optimization
problem.

2. Solve the problem with AMPL. Some of the parameters have already been written in a data file on the
website of the class.

Solution. Cotton: 114.87, wheat: 32.1295, rice: 20.8263, alfalfa: 32.1747.

Exercice 8 (Electrical grid). We consider an electrical grid, composed of generation and consumption stations
and transmission lines. We represent the grid with a graph made of N nodes (for the stations) and M edges
(for the lines). An edge e ∈ {1, ...,M} is characterized by an initial node d(e) ∈ {1, ..., N}, a terminal node
s(e) ∈ {1, ..., N}, and a resistance Re > 0. At each node k ∈ {1, ..., N}, a current of intensity Jk is injected
(when a current is withdrawn from the grid, we have Jk < 0). The sum of all injected currents must necessarily
be null, thus the parameters (Jk)k=1,...,N must satisfy

N∑
k=1

Jk = 0.

We give below an example with 4 nodes and 5 edges:

Edge e Initial node d(e) Terminal node s(e) Resistance Re
1 1 2 1
2 1 4 1
3 2 4 1
4 1 3 1
5 3 4 1

We will take J1 = 3, J2 = −1, J3 = −1, J4 = −1.
The goal of the exercise is to predict how the electric current spreads over the grid. We denote by Ie the

intensity of the current over the edge e, from d(e) to s(e). For any node k, we denote

σ(k) = {e ∈ {1, ...,M} | s(e) = k} and µ(k) = {e ∈ {1, ...,M} | d(e) = k}.

In the above example, we have for instance σ(4) = {2, 3, 5} and µ(2) = {3}.
One can show that (Ie)e=1,...,M is the unique solution to the optimization problem

inf
(Ie)e=1,...,M

M∑
e=1

1

2
ReI

2
e , subject to: Jk +

∑
e∈σ(k)

Ie =
∑
e∈µ(k)

Ie, ∀k = 1, ..., N.

We consider in a first step the example described above.
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1. Draw the associated graph.

2. Give an interpretation of the constraints. Enumerate them all explicitely.

3. Solve the optimization problem with AMPL. Solution: I = (1, 1, 0, 1, 0).

4. Write the KKT conditions satisfied by the solution of the problem. Give an interpretation.

We consider now a general grid.

5. Assuming that the feasible set is non-empty, prove that the problem possesses a solution.

6. Write the KKT conditions. Are they sufficient?

7. Optional: write an AMPL program for solving the problem associated with a general grid.

Exercice 9 (Signal processing). We realize N measurements of a signal, denoted y1,...,yN . These measurements
are supposed to be noisy and cannot be exploited as they are. We typically expect that a small portion of them
is completely inaccurate. A classical denoising technique consists in solving the following optimization problem:

inf
(xi)i=1,...,N∈RN

N∑
i=1

|xi − yi|+ α

N∑
i=2

(xi − xi−1)2,

where α > 0 is a fixed parameter. The solution is seen as a regularized signal.

1. Explain the structure of the cost function used in the optimization problem.

2. Write an AMPL program for solving the problem. An instance of y is provided in a data file on the website
of the class. Use α = 1. You will get a more precise solution by initializing the variable x to y. Warning:
the initialization of x must be done after that a numerical value has been assigned to N and y. Expected
objective value: 15.086, obtained in 1044 iterations.

An important difficulty in the numerical resolution of the problem lies in the fact that the cost function of
the problem is not differentiable, since the absolute value function is not differentiable at 0. We will see that
the problem can be reformulated as a constrained problem involving smooth functions.

4. Show that for all x ∈ R,

|x| = min
z∈R

z, subject to:

{
z ≥ x
z ≥ −x.

5. Reformulate the optimization problem by replacing each term of the form |h(x)| by a new optimization
variable z, and by adding two new constraints: z ≥ h(x) and z ≥ −h(x).

6. Write an AMPL program for solving the problem, exploiting this new formulation. Expected objective
value: 14.394, obtained in 71 iterations.
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