ENT 305A - AMPL Tutorial

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

1. GENERAL STRUCTURE OF THE CODE

The code is organized in three files, saved in the same folder:

- the model file, where the optimization variables and the parameters are declared, the cost function and the constraints are programmed, and the optimization variables are initialized;
- the parameter file, where the parameters are instantiated;
- the instruction file.

Consider the following optimization problem:

$$
\begin{aligned}
& \inf _{(x, y)} x^{2}+a(x+y)+2 y^{2} \\
& \text { s.t.: }\left\{\begin{array}{c}
x+y=b \\
x \geq 0,
\end{array}\right.
\end{aligned}
$$

where $a=-4$ and $b=2$. A model file could be as follows.

```
# Declaration of optimization variables
var x;
var y;
# Declaration of parameters
param a;
param b;
# Cost function
minimize f: x^2 + a*(x+y) + 2*y^2;
# Constraints
s.t. g: x+y = b;
s.t. h: x >= 0;
# Initialization of optimization variables
let x:= 1;
let y:= 2.5;
```

The corresponding parameter file can be written in this way.

```
# Instantiation of parameters variables
param a:= -4;
param b:= 2;
```

Save the model file and the parameter file in two files called model1.txt and param1.txt.

The instruction file (call it script1.txt) can be as follows:

```
reset;
model model1.txt;
data param1.txt;
solve;
display x,y;
display f;
display g.dual;
display h.dual;
```

Finally, to solve to the problem, write include script1.txt in the terminal.

Remarks.

- There is a semicolon ; at the end of each instruction.
- One has to give a name to the cost function (here, f) and a name to each constraint (here, g and h).
- It is not mandatory to initialize the optimization variables, by default, the initial value is 0 .
- Real-valued parameters can be declared and instantiated directly in the model file, for example with param a:=-4; in place of param a;
- No algebraic operation can be done in the parameter file, for example, $y:=1 / 3$; is not understood in the parameter file.
- Standard operations can be used with AMPL, for example: $\exp (x), \log (x), \min (x, y), \operatorname{sqrt}(x), \ldots$
- For the multiplication, the sign $*$ cannot be omitted.

2. VECTORS AND MATRICES

The command var x ; declares a real-valued optimization variable called x . Write var $\mathrm{x}\{1 . .10\}$; to declare an optimization variable in \mathbb{R}^{10}, with indices $1,2, \ldots, 10$. The i-th coordinate of x can be called with $\mathrm{x}[\mathrm{i}]$.

Consider for example the problem

$$
\inf _{\left(x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{3}} x_{2}^{4}+2 x_{2}+x_{3}^{2}+2 x_{3} x_{4}+x_{4}^{2} .
$$

The model file is as follows.

```
var x{2..4};
minimize f: x[2]^4 + 2*x[2] + x[3]^2
    + 2*x[3]*x[4] + x[4] ^2;
```

Similarly, matrix-valued optimization variables can be used. For example, the command var $x\{1 . .3,0 . .5\}$; is used to declare a optimization variable x with two indices running from 1 to 3 and from 0 to 5 . The coordinate corresponding to the indices 2 and 4 can be called with $x[2,4]$.

Vector- and matrix-valued parameters are declared in the same fashion, using the keyword param instead of var, in the model file. Consider for example a parameter y defined by:

$$
y=(y(4), y(5), y(6)) ; \quad y(4)=0, y(5)=1, y(6)=3
$$

It is declared in the model file with

```
param y{4..6};
```

It is instantiated in the parameter file with

```
param y:= 4 0
    5 1
    6 3;
```

One writes alternatively the value of the index and the corresponding value of the vector. Consider now a parameter y defined by

$$
\begin{array}{l|lll}
y & 0 & 1 & 2 \\
\hline 1 & 4 & 5 & 6 \\
2 & 5 & 6 & 7
\end{array}
$$

where the first index runs from 1 to 2 and the second one from 0 to 2 . It is declared in the model file with

```
param y{1..2,0..2};
```

and instantiated in the parameter file with

```
param y:= 1 0 4
    1 15
    126
    2 0 5
    2 16
    2 2 7;
```

Alternatively, y can be instantiated as follows:

```
param y: 0 1 2 :=
    1456
    2 5 6 7;
```


3. OPERATIONS INVOLVING SETS

3.1 Constraints

Consider an optimization problem involving the following constraints:

$$
x_{1} \geq 0, \quad x_{2} \geq 0, \quad x_{3} \geq 0
$$

This can be programmed in the model file as follows:

```
s.t. g{j in 1..3}: x[j] >= 0;
```


3.2 Sums

Sums can be programmed with the keyword sum, followed by an index set in brackets. Consider for example the problem

$$
\inf _{x \in \mathbb{R}^{8}} \sum_{i=1}^{8}\left(x_{i}^{2}+2 x_{i}\right)
$$

The model file is:

```
var x{1..8};
minimize f: sum{i in 1..8} (x[i]^2 + 2*x[i]);
```

Note that here the use of parentheses is mandatory.

3.3 Instantiating parameters

The parameter $x=(1,2,3,4,5)$ can be declared and instantiated with one command in the model file:

```
param x{i in 1..5} := i;
```


3.4 Initializing an optimization variable

For example:

```
let {i in 1..3} x[i]:= 2;
```

Remark. The syntax is the same for constraints parametrized by two indices, for sums over a pair of indices in two sets, for matrix-valued parameters and variables. Consider for example:

```
param z{i in 1..5,j in 1..3} := i+ 2*j;
```


4. CALCULATED VARIABLES

Some optimization problems may involve variables which can be written in function of some other variables (and/or parameters) in an explicit fashion. They are called calculated variables. Consider for example:

$$
\begin{aligned}
\inf _{(x, y) \in \mathbb{R}^{2}} & x^{2}+y^{2} \\
\text { s.t. } & y=x+3 ;
\end{aligned}
$$

The corresponding model file is

```
var x;
var y;
minimize f: x^2 + y^2;
s.t. g: y= x+3;
```

Here the variable y could be (mathematically) eliminated, which would allow to simplify the resolution of the problem. This elimination can be realised with AMPL with the following commands:

```
var x;
var y=x+3;
minimize f: x^2 + y^2;
```

Sometimes, it is convenient to introduce calculated variables to improve the readability of the program without slowing down the resolution of the problem. Consider the optimization problem

$$
\inf _{(a, b) \in \mathbb{R}^{2}} \sum_{i=1}^{N}\left(a+b x_{i}-y_{i}\right)^{2},
$$

where $N \in \mathbb{N}, x \in \mathbb{R}^{N}$, and $y \in \mathbb{R}^{N}$ are parameters. The model file can be written as follows:

```
param N;
param x{1..N};
param y{1..N};
var a;
var b;
minimize f: sum{i in 1..N} (a+b*x[i]-y[i])^2;
```

The optimization problem is equivalent to:

$$
\inf _{(a, b) \in \mathbb{R}^{2}, z \in \mathbb{R}^{N}} \sum_{i=1}^{N} z_{i}^{2} \quad \begin{aligned}
\text { s.t.: } & z_{i}=a+b x_{i}-y_{i}, \quad \forall i=1, \ldots, N .
\end{aligned}
$$

The variable z can be treated as a calculated variable:

```
param N;
param x{1..N};
param y{1..N};
var a;
var b;
var z{i in 1..N}= a + b*x[i]- y[i];
minimize f: sum{i in 1..N} (z[i]^2);
```


5. SYNTAXIC COMMENTS

The following symbols should not be mistaken:

- The symbol : is used for the definition of the cost function and the constraints.
- The symbol $=$ is used in equality constraints and calculated variables.
- The symbol := is used for instantiating parameters or for initializing optimization variables.
The different delimiters play different roles:
- The parentheses (and) are used to prioritize mathematical operations.
- The brackets [and] are used to access to the component of a vector or a matrix.
- The curly brackets \{ and \} are used whenever an index set is involved (declaration of vectors and parameters, sums, parametrized constraints).

6. DEBUGGING YOUR PROGRAM

Here is a list of common mistakes.
(1) The model and data files have not been saved before loading the script file.
(2) A model is loaded while the previous has not been erased (with the reset command).
(3) The character ; is missing at one or several places.
(4) Some optimization variables and some parameters have not been declared.
(5) Some optimization variables have been declared without the key word var.
(6) Some parameters have been declared without the key word param.
(7) Some parameters have been instantiated without the key word param.
(8) A space has been introduced between : and $=$. One should write $:=$ and not $:=$ for the instantiation of parameters.
(9) For parameterized constraints, the index set must be put before : as for example:
g \{i in 1..n\}: $\mathrm{x}[\mathrm{i}] \quad>=0$;
(10) Misuse of parentheses. The following commands are not understood by AMPL:
$\operatorname{sum}(\{i \operatorname{in} 1 . . n\} x[i])$;
$\mathrm{g}:(\mathrm{x}>=0)$;
(11) The character *, necessary for multiplications, is missing.
(12) Use of a strict inequality constraint.
(13) A vector-valued parameter (or optimization variable) has been declared as real-valued.
(14) Undefined parameters. AMPL does not understand: param x\{1..n\};
param n;
The parameter n must be declared before x.

