Continuous optimization PGE305

Laurent Pfeiffer
Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris

Institut Polytechnique de Paris November 2021

Exercise 1

The function f is defined by

$$
f(x, y)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+2 x y+\frac{y^{2}}{2}-y+9
$$

We observe that

$$
f(x, 0)=\frac{x^{3}}{3}+\frac{x^{2}}{2} \underset{x \rightarrow-\infty}{\longrightarrow}-\infty
$$

Therefore, the problem has no global solution.
We have

$$
\begin{gathered}
\nabla f(x, y)=\binom{x^{2}+x+2 y}{2 x+y-1}=\binom{0}{0} \\
\\
\Longleftrightarrow\left\{\begin{array}{l}
x^{2}-3 x+2=0 \\
y=1-2 x
\end{array}\right.
\end{gathered}
$$

Exercise 1

There are two stationary points: $(1,-1)$ and $(2,-3)$. We have

$$
D^{2} f(\bar{x})=\left(\begin{array}{cc}
2 x+1 & 2 \\
2 & 1
\end{array}\right)
$$

We recall that for a matrix of the form $M=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$,
■ M is positive definite $\Longleftrightarrow a>0$ and $a c-b^{2}>0$
$■ M$ is positive semi-definite $\Longleftrightarrow a \geq 0$ and $a c-b^{2} \geq 0$.

■ The point $(1,-1)$ is not a local minimizer since,

$$
D^{2} f(1,-1)=\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)
$$

is not positive semi-definite (the determinant is negative).

- The point $(2,-3)$ is a local minimizer since

$$
D^{2} f(2,-3)=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right)
$$

is positive definite (upper diagonal term and determinant positive).

