Continuous optimization PGE305

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Institut Polytechnique de Paris November 2021

Ínnía

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Exercise 6

1. Graph of *P* (for $t_0 = 0$, $\alpha = 1$, p = 1).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Exercise 6

Interpretation of the coefficients.

- p is the limit of the population: $p = \lim_{t \to +\infty} P(t)$.
- t_0 is a transition time: $P(t_0) = p/2$.
- α is a transition rate: $P'(t_0)/p = \alpha/4$.

2. Let us denote by (t_i, P_i) the pairs time-population provided as a data of the problem. The least-square problems writes:

$$\inf_{(p,t_0,\alpha)\in\mathbb{R}^3}\sum_{i=1}^N\left(y_i-\frac{p}{1+exp(-\alpha(t_i-t_0))}\right)^2$$

3. One can reasonably take: p = 500 and $t_0 = 2000$. We have: $P'(t_0) \approx (300 - 0)/(2000 - 1900) = 3$. Thus

$$\alpha = \frac{4P'(t_0)}{p} \approx \frac{12}{500} = 0,024.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Exercise 6

Solution: p = 440,834, $\alpha = 0,0216059$, $t_0 = 1976,63$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●