## Continuous optimization PGE305

Laurent Pfeiffer<br>Inria and CentraleSupélec, Université Paris-Saclay

## Ensta-Paris

Institut Polytechnique de Paris November 2021


## Exercise 6

1. Graph of $P\left(\right.$ for $\left.t_{0}=0, \alpha=1, p=1\right)$.


## Exercise 6

Interpretation of the coefficients.

- $p$ is the limit of the population: $p=\lim _{t \rightarrow+\infty} P(t)$.
- $t_{0}$ is a transition time: $P\left(t_{0}\right)=p / 2$.
- $\alpha$ is a transition rate: $P^{\prime}\left(t_{0}\right) / p=\alpha / 4$.

2. Let us denote by $\left(t_{i}, P_{i}\right)$ the pairs time-population provided as a data of the problem. The least-square problems writes:

$$
\inf _{\left(p, t_{0}, \alpha\right) \in \mathbb{R}^{3}} \sum_{i=1}^{N}\left(y_{i}-\frac{p}{1+\exp \left(-\alpha\left(t_{i}-t_{0}\right)\right)}\right)^{2}
$$

3. One can reasonably take: $p=500$ and $t_{0}=2000$. We have: $P^{\prime}\left(t_{0}\right) \approx(300-0) /(2000-1900)=3$. Thus

$$
\alpha=\frac{4 P^{\prime}\left(t_{0}\right)}{p} \approx \frac{12}{500}=0,024
$$

## Exercise 6

Solution: $p=440,834, \alpha=0,0216059, t_{0}=1976,63$.


