
Penalty methods Projected gradient method Interior point method

Continuous optimization
PGE305

Laurent Pfeiffer
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Introduction

Aim of the lecture: a general presentation of two numerical
methods for constrained optimization.

Penalty methods  equality constraints

Projected gradient methods  inequality constraints

Interior point methods  inequality constraints.

Warning:

The methods are general tools, which needs to specified,
improved, combined with each other... depending on the
nature of the problem of interest.

Theoretical justifications, implementation details are skipped.

Reference:

Nocedal and Wright. Numerical optimization. Springer
Science and Business Media, 2006.
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Quadratic penalization

We consider in this section

inf
x∈Rn

f (x), subject to: g(x) = 0, (P)

where f : Rn → R and g : Rn → Rm are given and “smooth”.

A general difficulty: we need to cope with two general goals:

Minimizing f

Ensuring the feasibility of x .

When designing a numerical method, the question arises:
Given an iterate xk , should we look for xk+1 so that

f (xk+1) < f (xk) or ‖g(xk+1)‖ < ‖g(xk)‖ ?
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Quadratic penalization

Main idea: combining the two objectives into a single one.
Given a real number c ≥ 0, consider the penalty problem:

inf
x∈Rn

Qc(x) := f (x) +
c

2
‖g(x)‖2. (P(c))

Vocabulary:

c is called penalty parameter

the expression c
2‖g(x)‖2 is called penalty term  it replaces

the constraint!

A rough statement: if c is large, (P) and (Pc) are “almost”
equivalent.

Intuition. For a solution xc to problem (Pc), both f (xc) and
c
2‖g(xc)‖2 are expected to be small. → If c is large, then ‖g(xc)‖
is very small.
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Quadratic penalization

Considering (P(c)) instead of (P), we make a trade-off between
the two objectives stated before.

Relative importance of the two objectives is represented by c :

c is small → minimality of f matters more

c is large → feasibility of the constraint matters more.

Big advantage of the approach: numerical methods of
unconstrained optimization can be employed for solving (Pc).
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Quadratic penalization

Exercise.
Consider the problem:

inf
x∈R

x , subject to: x = 0.

1 What is the solution x̄ to the problem?

2 Calculate the solution xc to the corresponding penalized
problem Pc .

3 Verify that xc −→
c→+∞

x̄ .
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Quadratic penalization

Solution.

1 Obviously x̄ = 0, since 0 is the unique feasible point of the
problem.

2 Let c > 0. We have Qc(x) = x + c
2x

2 and ∇Qc(x) = 1 + cx .
Therefore,

∇Qc(x) = 0⇐⇒ x = −1

c
.

Since Qc is convex, xc := −1/c is the unique solution of (Pc).

3 Obviously
xc = −1/c −→

c→∞
0 = x̄ .
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Figure: Graph of Qc , for various values of c
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Quadratic penalization

Lemma 1

Let ck →∞. Let (xk)k∈N be a sequence in Rn. Assume that

For all k ∈ N, xk is the solution to (Pck ).

The sequence (xk)k∈N converges, let x̄ denote the limit.

There exists x̃ such that g(x̃) = 0.

Then, x̄ is a solution to the original constrained problem (P).

Proof. Step 1. Let x be a feasible point (that is, g(x) = 0). Then,

Qck (x) = f (x) +
ck
2
‖g(x)‖2 = f (x).

In particular, Qck (x̃) = f (x̃).
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Quadratic penalization

Step 2: x̄ is feasible. For all k ∈ N, we have

ck‖g(xk)‖2 = Qck (xk)− f (xk)

≤ Qck (x̃)− f (xk) [Optimality of xk ]

= f (x̃)− f (xk). [Equality of Step 1]

Since f (xk)→ f (x̄), the sequence (f (xk))k∈N is bounded.
Therefore, there exist M > 0 such that ck‖g(xk)‖2 ≤ M. Thus

‖g(xk)‖ ≤
√

M/ck , ∀k ∈ N.

Passing to the limit, we get ‖g(x̄)‖ ≤ 0. Thus x̄ is feasible.
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Quadratic penalization

Step 3. Optimality of x̄ . Let x be feasible. We have

f (xk) ≤ f (xk) + ck‖g(xk)‖2

= Qck (xk)

≤ Qck (x) [Optimality of xk ]

= f (x). [Equality of Step 1]

Passing to the limit, we get

f (x̄) ≤ f (x).

Thus x̄ is optimal.
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Quadratic penalization

The result of the lemma must be seen as an “ideal” situation.

Difficulties in practice:

The problem (Pc) may not have a solution, even if (P) has
a solution. Example:

inf
x∈R

x3, subject to: x = 0.

The sequence (xk)k∈N may not converge.

If xk is only a local solution of (Pck ), no guaranty that x̄ is a
local solution of (P).

The problem (Pc) is hard to solve when c is large, it is likely
to be ill-conditioned (see next example).
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Quadratic penalization

Example. Consider:

inf
(x ,y)∈R2

1

2

(
x2 + (y − 1)2

)
, subject to: x = y .

Projection problem of the point (0, 1) on the line {(x , y) | y = x}.

Exercise. Verify the following statements.

Solution: x∗ = (0.5, 0.5).

Penalty function: Qc(x , y) = 1
2

(
x2 + (y − 1)2

)
+ c

2 (y − x)2.

Solution of Pc :

(
xc
yc

)
=

1

1 + 2c

(
c

1 + c

)
.

There exists a constant M such that for all c ≥ 0,

‖(xc , yc)− (x̄ , ȳ)‖ ≤ M/c .
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Quadratic

General idea: increase the value of c progressively, to mitigate the
difficulty of minimizing of Qc .

Algorithm:

1 Input:

Number of iterations K
Tolerances ε0 > ε1... > εK−1 > 0
Penalty parameters c0 < c1... < cK−1

Starting point x0 ∈ Rn.

2 For k = 0, ...,K − 1, do

Using xk as a starting point, find xk+1 such that

‖∇Qck (xk+1)‖ ≤ εk .
End for.

3 Output: xK .
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Augmented Lagrangian

The two ideas of the augmented Lagrangian method:

1 Solving a penalty problem (like (Pc)) also yields an
approximation of the Lagrange multiplier.

2 We can “improve” the penalty function Qc with the
knowledge of that approximation.

Algorithm: at each iteration,

the penalty parameter is increased

the approximations xk of the solution and λk of the Lagrange
multiplier are improved.



Penalty methods Projected gradient method Interior point method

Augmented Lagrangian

Idea 1. Let φ : y ∈ Rm 7→ 1
2‖y‖

2 ∈ R. We have Dφ(y) = y>.

We have Qc(x) = f + cφ ◦ g(x). By the chain rule we have

DQc(x) = Df (x) + cDφ(g(x))Dg(x)

= Df (x) + cg(x)>Dg(x)

= DxL(x ,−cg(x)),

where L denotes the Lagrangian.

If DQc(x) ≈ 0, an approximation of the Lagrange multiplier λ̄ is

λ̄ ≈ −cg(x).
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Augmented Lagrangian

Idea 2. Let c > 0. The augmented Lagrangian
Lc : Rn × Rm → R is defined by

Lc(x , λ) = f (x)− 〈λ, g(x)〉+
c

2
‖g(x)‖2.

We have

Lc(x , λ) = L(x , λ) +
c

2
‖g(x)‖2

= Qc(x)− 〈λ, g(x)〉

= f (x) +
c

2

∥∥∥g(x)− λ

c

∥∥∥2
− ‖λ‖

2

2c
.
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Augmented Lagrangian

For a fixed λ, Lc(·, λ) still serves as a penalty function. If xc,λ
minimizes Lc(x , λ) and if c is very large, then

f (xc,λ) is small
c
2‖g(x)− λ

c ‖
2 is small → ‖g(x)− λ

c ‖ is very small
→ ‖g(x)‖ is very small.

We also have:

DxLc(x , λ) = Df (x)− λ>Dg(x) + cg(x)>Dg(x)

= DxL(x , λ− cg(x)).

Therefore, if DxLc(x , λ) ≈ 0, an approximation of the Lagrange
multiplier λ̄ is

λ̄ ≈ λ− cg(x).
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Augmented Lagrangian

The new penalty problem:

inf
x∈Rn

Lc(x , λ). (Pc,λ)

Lemma 2

Let x̄ be a local minimizer of (P). Under technical assumptions,
there exists λ̄ and c̄ ≥ 0 such that for all c > c̄,

the KKT conditions hold true

x̄ is a local solution to (Pc,λ̄).

Idea of proof. We have

DxLc(x̄ , λ̄) = DxL(x̄ , λ̄− cg(x̄)) = DxL(x̄ , λ̄) = 0.

For c large enough, D2
xxLc(x̄ , λ̄) is positive definite.

Therefore, x̄ is a local solution.
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Augmented Lagrangian

Example 1. Consider infx∈R x − x2, subject to: x = 0.

Solution x̄ = 0.

Lagrangian L(x , λ) = x − x2 − λx . We have

DxL(x̄ , λ) = 1− 2x̄ − λ = 1− λ =⇒ λ̄ = 1.

Augmented lagrangian:

Lc(x , λ) = x − x2 − λx +
c

2
x2 = (1− λ)x +

(c
2
− 1
)
x2.

If c > c̄ := 2, Lc(·, λ) has a unique minimizer

xc,λ =
λ− 1

c − 2
=
λ− λ̄
c − 2

.

In particular, xc,λ̄ = x̄ .
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Augmented Lagrangian
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Quadratic penalization

Example 2. Consider:

inf
(x ,y)∈R2

1

2

(
x2 + (y − 1)2

)
, subject to: x = y .

Projection problem of the point (0, 1) on the line {(x , y) | y = x}.

Exercise. Verify the following statements.

Solution: x∗ = (0.5, 0.5), λ∗ = 0.5. Augmented Lagrangian:

Lc(x , y , λ) = 1
2

(
x2 + (y − 1)2

)
− λ(x − y) + c

2 (y − x)2.

Solution of (Pc,λ):

(
xc
yc

)
= 1

1+2c

(
c + λ

1 + c − λ

)
.

There exists a constant M such that for all c > 0,

‖(xc , yc)− (x̄ , ȳ)‖ ≤ M|λ̄− λ|/c .
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Augmented Lagrangian
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Augmented Lagrangian
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Augmented Lagrangian
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Penalty methods Projected gradient method Interior point method

Augmented Lagrangian

Algorithm.

1 Input:

Initial point and multipliers (x0, λ0) ∈ Rn × Rm

Initial penalty parameter c0 > 0, initial tolerance ε0 > 0
Tolerance ε > 0.

2 Set k = 0.

3 While ‖DxL(xk , λk)‖ > ε and ‖g(xk)‖ > ε,

Find xk+1 such that ‖DxLck (xk+1, λk)‖ ≤ εk .
If ‖g(xk+1)‖ is small, set λk+1 = λk − ckg(xk+1). Reduce εk .
Otherwise, increase ck .
Set k = k + 1.

End while.

4 Output (xk , λk).
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Lagrangian decomposition

Main ideas of Lagrangian decomposition methods:

We take c = 0 in the augmented Lagrangian. At iterate k ,
given an approximation λk of the Lagrange multiplier, we solve

inf
x∈Rn

L(x , λk). (Pλk )

Given a solution xk+1, the Lagrange multiplier is updated with

λk+1 = λk − αg(xk+1),

where α > 0 → Uzawa’s algorithm.

The update of λk is an ascent gradient step for a
maximization problem related to (P), called dual problem.
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Lagrangian decomposition

Remarks.

Convergence of such methods can be established only under
convexity assumptions.

The stepsize α > 0 must in general be small enough to ensure
convergence. Instead of a fixed stepsize, one can use

λk+1 = λk − αkg(xk+1),

where αk > 0 and where

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k = 0.
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Lagrangian decomposition

Main advantage of Lagrangian decomposition: very often the
minimization of L can be “parallelized”.

Standard case: additive constraints.

Consider

inf
(x1,x2)∈X1×X2

f1(x1) + f2(x2), subject to: g1(x1) + g2(x2) = d ,

where f1, f2, X1, X2, g1, g2, and d are given.

Lagrangian:

L(x1, x2, λ) = f1(x1) + f2(x2) + 〈λ, g1(x1) + g2(x2)− d〉

=
[
f1(x1) + 〈λ, g1(x1)〉︸ ︷︷ ︸

=:L1(x1,λ)

]
+
[
f2(x2) + 〈λ, g2x2〉︸ ︷︷ ︸

=:L2(x2,λ)

]
− 〈λ, d〉.
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Lagrangian decomposition

Given λ, the minimization of L(·, λ) is decomposed into two
subproblems:

inf
x1∈Rn1

L1(x1, λ) and inf
x2∈Rn2

L2(x2, λ),

which can be solved independently. Very often the two
subproblems are much easier to solve than the original problem.

Remark. Straightforward generalization to the case

inf
x1,...,xK

∈Rn1×...RnK

f1(x1) + . . .+ fK (xK ), s.t.: g1(x1) + . . .+ gK (xK ) = K .

→ Decomposition in K subproblems (at each iteration).
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Lagrangian decomposition
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Lagrangian decomposition

1. Application 1: space decomposition.

Two production units, with two independent production
processes represented by the variables and constraints

x1 ∈ X1 and x2 ∈ X2.

Costs: f1(x1) and f2(x2).

Production of each unit: g1(x1) and g2(x2).

Coupling constraint: total production = demand d , that is:

g1(x1) + g2(x2) = d .
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Lagrangian decomposition

Interpretation of the decomposition mechanism.

A “centralizer” buys the production of each unit at a unitary
price λk .

Each unit must optimize: infxi∈Xi
fi (xi )− λkgi (xi ).

Solution: xi ,k+1.

If g1(x1,k+1) + g2(x2,k+1) < d , the total prod. is too small.
→ The incentive λ to produce is too small.

It must be increased.
If g1(x1,k+1) + g2(x2,k+1) > d , the total prod. is too large.
→ The incentive λ to produce is too big.

It must be decreased.

This is consistent with the formula

λk+1 = λk − αk+1

(
g1(x1,k+1) + g2(x2,k+1)− d

)
.
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Lagrangian decomposition

Application 2: time decomposition.

A production process is decomposed over two periods.

Optimization variables:

x1: decisions specific to period 1
x2: decisions specific to period 2
y : decisions involved at both periods.

Example: management of a stock of gas.

Quantity withdrawn from the stock at period i : xi .
Level of stock between period 1 and period 2: y .
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Lagrangian decomposition

Abstract problem:

inf
(x1,x2,y)

(x1,y)∈X1

(x2,y)∈X2

f1(x1, y) + f2(x2, y).

Equivalent “decomposable” problem:

inf
(x1,x2,y1,y2)
(x1,y1)∈X1

(x2,y2)∈X2

f1(x1, y1) + f2(x2, y2), subject to: y2 − y1 = 0.

Independent (w.r.t. time) sub-problems:

inf
(x1,y1)∈X1

f1(x1, y1) + λky1 and inf
(x2,y2)∈X2

f2(x2, y2)− λky2.
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Lagrangian decomposition

Application 3: stochastic decomposition.

A production process is decomposed over two periods.
A random event with two outcomes ω1 and ω2, with
probabilities p and (1− p), arises inbetween.

Optimization variables:

x1: decisions taken if outcome ω1 arises
x2: decisions taken if outcome ω2 arises
y : decisions taken before the random event.

Example: purchase of gas y on a day-ahead market (that is,
on a given day for the next one).
Random event: temperature, which impacts consumption.
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Lagrangian decomposition

Abstract problem:

inf
(x1,x2,y)
(x1,y)∈X
(x2,y)∈X

pf (x1, y , ω1) + (1− p)f (x2, y , ω2).

Equivalent problem (with non-anticipativity constraint):

inf
(x1,x2,y1,y2)
(x1,y1)∈X
(x2,y2)∈X

pf (x1, y1, ω1) + (1− p)f (x2, y2, ω2), s.t. y2 − y1 = 0.

Independent (w.r.t. randomness) sub-problems:

inf
(x1,y1)∈X1

pf1(x1, y1, ω1) + λky1, inf
(x2,y2)∈X2

(1− p)f2(x2, y2, ω2)− λky2.
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Projection

The projected gradient method uses a mapping called projection
defined below.

Lemma 3

Let K ⊂ Rn be a non-empty, convex, and closed set. For all
x0 ∈ Rn, there exists a unique solution to the problem

inf
x∈Rn
‖x − x0‖2, subject to: x ∈ K .

It is called projection of x0 on K , and denoted ProjK (x0).

Remark. The projection depends on the chosen norm ‖ · ‖.
For simplicity, we consider the Euclidean norm.
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Projection

Example 1: projection on a cuboid.
Let K be described by

K =
{
x ∈ Rn | `i ≤ xi ≤ ui

}
,

where the coefficients `1,...,`n ∈ R ∪ {−∞} and
u1,...,un ∈ R ∪ {+∞} are given.

Let x ∈ Rn, let y = ProjK (x). Then

yi = min(max(xi , `i ), ui ), ∀i = 1, ..., n.
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Projection

Figure: Projection on a cuboid.
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Projection

Example 2: projection on a ball.
Let K be described by

K =
{
x ∈ Rn | ‖x − xC‖ ≤ R

}
,

where xC ∈ Rn and R ≥ 0 are given.

For all x ∈ Rn,

ProjK (x) = xC + min
(
‖x − xC‖,R

) (x − xC )

‖x − xC‖
.
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Projection

Figure: Projection on a ball.
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Projection

Example 3: cartesian product.
Let K be given by

K = K1 × K2,

where K1 and K2 are given non-empty closed and convex subsets
of Rn1 and Rn2 .

Then for all x = (x1, x2) ∈ Rn1+n2 ,

ProjK (x) =
(

ProjK1
(x1),ProjK2

(x2)
)
.
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Method

Optimization problem. Consider

inf
x∈Rn

f (x), x ∈ K ,

where f : Rn → R is given and differentiable and K is a given
non-empty convex and closed subset of Rn.

Numerical assumption: ProjK (·) is easy to compute.

Main idea: at iteration k, replace the search on the half line{
xk − α∇f (xk) |α ≥ 0

}
used in unconstrained optimization by a

search on {
ProjK

(
xk − α∇f (xk)

)︸ ︷︷ ︸
=:xk (α)

|α ≥ 0
}
.
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Method

Technical aspects.

Armijo’s rule is replaced by the rule

f (xk(α)) ≤ f (xk) + c1〈∇f (xk), xk(α)− xk〉.

The backstepping method can be used in this context.

A possible stopping criterion is

‖xk(1)− xk‖ ≤ ε.
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Combination with penalty methods

Consider the problem

inf
x∈Rn

f (x), subject to:

{
gi (x) = 0 ∀i ∈ E ,
gi (x) ≥ 0 ∀i ∈ I,

where f : Rn → R and g : Rn → Rm are given and (E , I) is a
partition of {1, ...,m}.

An equivalent formulation is

inf
x∈Rn

y∈Rm

f (x), subject to:

{
g(x)− y = 0

y ∈ K ,

where: K =

{
y ∈ Rm |

{
yi = 0 ∀i ∈ E
yi ≥ 0 ∀i ∈ I

}
.
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Combination with penalty methods

Main idea: projection on K (a cuboid) is easy to compute.
Handle y ∈ K with the projected gradient method.

Algorithm.

At iteration k , the iterates xk ∈ Rn, yk ∈ Rm, λk ∈ Rm, and
ck are given.

Solve (approximately) the penalty problem:

inf
x∈Rn

y∈Rm

Lck (x , y , λk) := f (x)− 〈λk , g(x)− y〉+
ck
2
‖g(x)− y‖2,

subject to: y ∈ K ,

with the projected gradient method.
Use (xk , yk) as a starting point.
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Nonnegative variables

Optimization problem. Consider

inf
x∈Rn

f (x), subject to: xi ≥ 0, ∀i = 1, ..., n.

Barrier function: given c > 0, consider the function Bc defined by

Bc(x) = f (x)− c
n∑

i=1

ln(xi ),

for all x ∈ Rn
>0 := {y ∈ Rn | yi > 0, ∀i = 1, ..., n}.

Main idea: approximate (P) by

inf
x∈Rn

>0

Bc(x). (Pc)
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Nonnegative variables

General comments.

We have: − ln(xi )→∞ as xi → 0.
→ Feasible points close to the boundary of the feasible set are
penalized (whatever the value of c).

A strong modification of the cost function on the feasible set
is undesirable.
→ The barrier parameter c should be ideally very small.

Problem (Pc) can be solved with methods for unconstrained
optimization.
The standard stepsize rules (Armijo,...) prevents us from
getting to close to the boundary.
Ill-conditioning for small values of c.
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Nonnegative variables

Example 1.

Consider
inf
x∈R

x , subject to: x ≥ 0.

Solution: x̄ = 0.

Barrier function: Bc(x) = x − c ln(x).

∇Bc(x) = 1− c

x
= 0⇐⇒ x = c .

Since Bc is convex, xc := c is the global solution to (Pc).

We have xc −→
c→0

0.
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Nonnegative variables
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Figure: Level-sets Bc(·), for various values of c
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Nonnegative variables

Example 2.
Consider

inf
(x ,y)∈R2

1

2
(y − 1)2 + x , subject to:

{
x ≥ 0

y ≥ 0.

Solution: (x̄ , ȳ) = (0, 1).

Solution to the barrier problem: (xc , yc) =
(
c ,

1 +
√

1 + 4c

2

)
.
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Nonnegative variables
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Nonnegative variables
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Nonnegative variables
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Nonnegative variables
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Nonnegative variables
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Nonnegative variable

Interpretation with the KKT conditions.

Let x̄ be a solution to (P). Let λ̄ ∈ Rn be the associated Lagrange
multiplier.

Lagrangian: L(x , λ) = f (x)− 〈λ, x〉. Stationarity condition:

∇xL(x̄ , λ̄) = ∇f (x̄)− λ̄ = 0.

Sign condition: λ̄i ≥ 0.

Complementarity condition: x̄i > 0 =⇒ λ̄i = 0.
Equivalently: x̄i λ̄i = 0.



Penalty methods Projected gradient method Interior point method

Nonnegative variable

Optimality conditions for the barrier problem.

For any x ∈ Rn
>0 we denote 1

x =
(

1
x1
, ..., 1

xn

)
.

Let xc be a solution to (Pc). We have

∂Bc

∂xi
(xc) =

∂f

∂xi
(xc)− c

xi
= 0.

Therefore ∇Bc(xc) = ∇f (xc)− c

xc
= ∇xL(xc ,

c

xc
).

Define λc = c
xc
∈ Rn

>0.
The pair (xc , λc) satisfies the KKT conditions approximately:

∇L(xc , λc) = 0, xc,iλc,i = c , ∀i ∈ {1, ..., n}.
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Nonnegative variables

Figure: Regularization of the complementarity condition
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General problem

Consider

inf
x∈Rn

f (x),

{
gE (x) = 0

gI (x) ≥ 0.

Equivalent formulation with slack variable:

inf
x∈Rn

f (x),


gE (x) = 0

gI (x)− y = 0

y ≥ 0.
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General problems

Numerical approaches.

Approach 1:

Replace y ≥ 0 by a barrier term: −c
∑n

i=1 ln(yi ).

Penalize the remaining equality constraints.

Approach 2:

Replace y ≥ 0 by a barrier term: −c
∑n

i=1 ln(yi ).

Apply Newton’s method to the KKT conditions associated
with the obtained problem.
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