Continuous optimization PGE305

Laurent Pfeiffer
 Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris

Institut Polytechnique de Paris
November 9, 2021

Introduction

Aim of the lecture: a general presentation of two numerical methods for constrained optimization.

■ Penalty methods \rightsquigarrow equality constraints
■ Projected gradient methods \rightsquigarrow inequality constraints
■ Interior point methods \rightsquigarrow inequality constraints.
Warning:

- The methods are general tools, which needs to specified, improved, combined with each other... depending on the nature of the problem of interest.
■ Theoretical justifications, implementation details are skipped.
Reference:
Nocedal and Wright. Numerical optimization. Springer Science and Business Media, 2006.

1 Penalty methods for constrained optimization

- Quadratic penalization
- Augmented Lagrangian

■ Lagrangian decomposition

2 Projected gradient method

- Projection
- Method
- Combination with penalty methods

3 Interior point method

- Nonnegative variables
- General problems

Quadratic penalization

We consider in this section

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{n}} f(x), \quad \text { subject to: } g(x)=0 \tag{P}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are given and "smooth".
A general difficulty: we need to cope with two general goals:

- Minimizing f
- Ensuring the feasibility of x.

When designing a numerical method, the question arises:
Given an iterate x_{k}, should we look for x_{k+1} so that

$$
f\left(x_{k+1}\right)<f\left(x_{k}\right) \quad \text { or } \quad\left\|g\left(x_{k+1}\right)\right\|<\left\|g\left(x_{k}\right)\right\| \quad ?
$$

Quadratic penalization

Main idea: combining the two objectives into a single one. Given a real number $c \geq 0$, consider the penalty problem:

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{n}} Q_{c}(x):=f(x)+\frac{c}{2}\|g(x)\|^{2} \tag{c}
\end{equation*}
$$

Vocabulary:

- c is called penalty parameter
- the expression $\frac{c}{2}\|g(x)\|^{2}$ is called penalty term \rightsquigarrow it replaces the constraint!

A rough statement: if c is large, (P) and $\left(P_{c}\right)$ are "almost" equivalent.

Intuition. For a solution x_{c} to problem $\left(P_{c}\right)$, both $f\left(x_{c}\right)$ and $\frac{c}{2}\left\|g\left(x_{c}\right)\right\|^{2}$ are expected to be small. \rightarrow If c is large, then $\left\|g\left(x_{c}\right)\right\|$ is very small.

Quadratic penalization

Considering $(P(c))$ instead of (P), we make a trade-off between the two objectives stated before.

Relative importance of the two objectives is represented by c :
■ c is small \rightarrow minimality of f matters more

- c is large \rightarrow feasibility of the constraint matters more.

Big advantage of the approach: numerical methods of unconstrained optimization can be employed for solving $\left(P_{c}\right)$.

Quadratic penalization

Exercise.

Consider the problem:

$$
\inf _{x \in \mathbb{R}} x, \quad \text { subject to: } x=0
$$

1 What is the solution \bar{x} to the problem?
2 Calculate the solution x_{c} to the corresponding penalized problem P_{c}.
3 Verify that $x_{c} \underset{c \rightarrow+\infty}{\longrightarrow} \bar{x}$.

Quadratic penalization

Solution.

1 Obviously $\bar{x}=0$, since 0 is the unique feasible point of the problem.

2 Let $c>0$. We have $Q_{c}(x)=x+\frac{c}{2} x^{2}$ and $\nabla Q_{c}(x)=1+c x$.
Therefore,

$$
\nabla Q_{c}(x)=0 \Longleftrightarrow x=-\frac{1}{c}
$$

Since Q_{c} is convex, $x_{c}:=-1 / c$ is the unique solution of $\left(P_{c}\right)$.
3 Obviously

$$
x_{c}=-1 / c \underset{c \rightarrow \infty}{\longrightarrow} 0=\bar{x}
$$

Quadratic penalization

Figure: Graph of Q_{c}, for various values of c

Quadratic penalization

Lemma 1

Let $c_{k} \rightarrow \infty$. Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be a sequence in \mathbb{R}^{n}. Assume that

- For all $k \in \mathbb{N}, x_{k}$ is the solution to $\left(P_{c_{k}}\right)$.
- The sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges, let \bar{x} denote the limit.
- There exists \tilde{x} such that $g(\tilde{x})=0$.

Then, \bar{x} is a solution to the original constrained problem (P).

Proof. Step 1. Let x be a feasible point (that is, $g(x)=0$). Then,

$$
Q_{c_{k}}(x)=f(x)+\frac{c_{k}}{2}\|g(x)\|^{2}=f(x)
$$

In particular, $Q_{c_{k}}(\tilde{x})=f(\tilde{x})$.

Quadratic penalization

Step 2: \bar{x} is feasible. For all $k \in \mathbb{N}$, we have

$$
\begin{aligned}
c_{k}\left\|g\left(x_{k}\right)\right\|^{2} & =Q_{c_{k}}\left(x_{k}\right)-f\left(x_{k}\right) \\
& \leq Q_{c_{k}}(\tilde{x})-f\left(x_{k}\right) \\
& =f(\tilde{x})-f\left(x_{k}\right)
\end{aligned}
$$

$$
\leq Q_{c_{k}}(\tilde{x})-f\left(x_{k}\right) \quad\left[\text { Optimality of } x_{k}\right]
$$

[Equality of Step 1]

Since $f\left(x_{k}\right) \rightarrow f(\bar{x})$, the sequence $\left(f\left(x_{k}\right)\right)_{k \in \mathbb{N}}$ is bounded. Therefore, there exist $M>0$ such that $c_{k}\left\|g\left(x_{k}\right)\right\|^{2} \leq M$. Thus

$$
\left\|g\left(x_{k}\right)\right\| \leq \sqrt{M / c_{k}}, \quad \forall k \in \mathbb{N}
$$

Passing to the limit, we get $\|g(\bar{x})\| \leq 0$. Thus \bar{x} is feasible.

Quadratic penalization

Step 3. Optimality of \bar{x}. Let x be feasible. We have

$$
\begin{aligned}
f\left(x_{k}\right) & \leq f\left(x_{k}\right)+c_{k}\left\|g\left(x_{k}\right)\right\|^{2} \\
& =Q_{c_{k}}\left(x_{k}\right) \\
& \leq Q_{c_{k}}(x) \\
& =f(x) .
\end{aligned}
$$

[Optimality of x_{k}]
[Equality of Step 1]

Passing to the limit, we get

$$
f(\bar{x}) \leq f(x) .
$$

Thus \bar{x} is optimal.

Quadratic penalization

The result of the lemma must be seen as an "ideal" situation.
Difficulties in practice:

- The problem $\left(P_{c}\right)$ may not have a solution, even if (P) has a solution. Example:

$$
\inf _{x \in \mathbb{R}} x^{3}, \quad \text { subject to: } x=0
$$

- The sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ may not converge.

■ If x_{k} is only a local solution of $\left(P_{c_{k}}\right)$, no guaranty that \bar{x} is a local solution of (P).

- The problem $\left(P_{c}\right)$ is hard to solve when c is large, it is likely to be ill-conditioned (see next example).

Quadratic penalization

Example. Consider:

$$
\inf _{(x, y) \in \mathbb{R}^{2}} \frac{1}{2}\left(x^{2}+(y-1)^{2}\right), \quad \text { subject to: } x=y
$$

Projection problem of the point $(0,1)$ on the line $\{(x, y) \mid y=x\}$.

Exercise. Verify the following statements.
\square Solution: $x^{*}=(0.5,0.5)$.
\square Penalty function: $Q_{c}(x, y)=\frac{1}{2}\left(x^{2}+(y-1)^{2}\right)+\frac{c}{2}(y-x)^{2}$.

- Solution of $P_{c}:\binom{x_{c}}{y_{c}}=\frac{1}{1+2 c}\binom{c}{1+c}$.
- There exists a constant M such that for all $c \geq 0$,

$$
\left\|\left(x_{c}, y_{c}\right)-(\bar{x}, \bar{y})\right\| \leq M / c .
$$

Quadratic penalization

Figure: Graph of Q_{c}, for $c=0$.

Quadratic penalization

Figure: Graph of Q_{c}, for $c=0.5$.

Quadratic penalization

Figure: Graph of Q_{c}, for $c=1$.

Quadratic penalization

Figure: Graph of Q_{c}, for $c=2$.

Quadratic penalization

Figure: Graph of Q_{c}, for $c=5$.

Quadratic

General idea: increase the value of c progressively, to mitigate the difficulty of minimizing of Q_{C}.

Algorithm:
1 Input:

- Number of iterations K
- Tolerances $\varepsilon_{0}>\varepsilon_{1} \ldots>\varepsilon_{K-1}>0$
- Penalty parameters $c_{0}<c_{1} \ldots<c_{K-1}$
- Starting point $x_{0} \in \mathbb{R}^{n}$.

2 For $k=0, \ldots, K-1$, do

- Using x_{k} as a starting point, find x_{k+1} such that

$$
\left\|\nabla Q_{c_{k}}\left(x_{k+1}\right)\right\| \leq \varepsilon_{k} .
$$

End for.
3 Output: x_{K}.

Augmented Lagrangian

The two ideas of the augmented Lagrangian method:
1 Solving a penalty problem (like $\left(P_{c}\right)$) also yields an approximation of the Lagrange multiplier.
2 We can "improve" the penalty function Q_{c} with the knowledge of that approximation.

Algorithm: at each iteration,

- the penalty parameter is increased
- the approximations x_{k} of the solution and λ_{k} of the Lagrange multiplier are improved.

Augmented Lagrangian

Idea 1. Let $\phi: y \in \mathbb{R}^{m} \mapsto \frac{1}{2}\|y\|^{2} \in \mathbb{R}$. We have $D \phi(y)=y^{\top}$.
We have $Q_{c}(x)=f+c \phi \circ g(x)$. By the chain rule we have

$$
\begin{aligned}
D Q_{c}(x) & =D f(x)+c D \phi(g(x)) D g(x) \\
& =D f(x)+c g(x)^{\top} D g(x) \\
& =D_{x} L(x,-c g(x)),
\end{aligned}
$$

where L denotes the Lagrangian.
If $D Q_{c}(x) \approx 0$, an approximation of the Lagrange multiplier $\bar{\lambda}$ is

$$
\bar{\lambda} \approx-\operatorname{cg}(x)
$$

Augmented Lagrangian

Idea 2. Let $c>0$. The augmented Lagrangian
$L_{c}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is defined by

$$
L_{c}(x, \lambda)=f(x)-\langle\lambda, g(x)\rangle+\frac{c}{2}\|g(x)\|^{2} .
$$

We have

$$
\begin{aligned}
L_{c}(x, \lambda) & =L(x, \lambda)+\frac{c}{2}\|g(x)\|^{2} \\
& =Q_{c}(x)-\langle\lambda, g(x)\rangle \\
& =f(x)+\frac{c}{2}\left\|g(x)-\frac{\lambda}{c}\right\|^{2}-\frac{\|\lambda\|^{2}}{2 c} .
\end{aligned}
$$

Augmented Lagrangian

For a fixed $\lambda, L_{c}(\cdot, \lambda)$ still serves as a penalty function. If $x_{c, \lambda}$ minimizes $L_{c}(x, \lambda)$ and if c is very large, then

- $f\left(x_{c, \lambda}\right)$ is small
- $\frac{c}{2}\left\|g(x)-\frac{\lambda}{c}\right\|^{2}$ is small $\rightarrow\left\|g(x)-\frac{\lambda}{c}\right\|$ is very small $\rightarrow\|g(x)\|$ is very small.

We also have:

$$
\begin{aligned}
D_{x} L_{c}(x, \lambda) & =D f(x)-\lambda^{\top} D g(x)+c g(x)^{\top} D g(x) \\
& =D_{x} L(x, \lambda-c g(x))
\end{aligned}
$$

Therefore, if $D_{x} L_{c}(x, \lambda) \approx 0$, an approximation of the Lagrange multiplier $\bar{\lambda}$ is

$$
\bar{\lambda} \approx \lambda-\operatorname{cg}(x)
$$

Augmented Lagrangian

The new penalty problem:

$$
\inf _{x \in \mathbb{R}^{n}} L_{c}(x, \lambda)
$$

Lemma 2

Let \bar{x} be a local minimizer of (P). Under technical assumptions, there exists $\bar{\lambda}$ and $\bar{c} \geq 0$ such that for all $c>\bar{c}$,

- the KKT conditions hold true
- \bar{x} is a local solution to $\left(P_{c, \bar{\lambda}}\right)$.

Idea of proof. We have

$$
D_{x} L_{c}(\bar{x}, \bar{\lambda})=D_{x} L(\bar{x}, \bar{\lambda}-c g(\bar{x}))=D_{x} L(\bar{x}, \bar{\lambda})=0
$$

For c large enough, $D_{x x}^{2} L_{c}(\bar{x}, \bar{\lambda})$ is positive definite. Therefore, \bar{x} is a local solution.

Augmented Lagrangian

Example 1. Consider $\inf _{x \in \mathbb{R}} x-x^{2}$, subject to: $x=0$.

- Solution $\bar{x}=0$.
- Lagrangian $L(x, \lambda)=x-x^{2}-\lambda x$. We have

$$
D_{x} L(\bar{x}, \lambda)=1-2 \bar{x}-\lambda=1-\lambda \quad \Longrightarrow \quad \bar{\lambda}=1 .
$$

- Augmented lagrangian:

$$
L_{c}(x, \lambda)=x-x^{2}-\lambda x+\frac{c}{2} x^{2}=(1-\lambda) x+\left(\frac{c}{2}-1\right) x^{2} .
$$

If $c>\bar{c}:=2, L_{c}(\cdot, \lambda)$ has a unique minimizer

$$
x_{c, \lambda}=\frac{\lambda-1}{c-2}=\frac{\lambda-\bar{\lambda}}{c-2} .
$$

In particular, $x_{c, \bar{\lambda}}=\bar{x}$.

Augmented Lagrangian

Figure: Graph of $L_{c}(\cdot, \lambda)$, for $c=4$ and various values of λ.

Quadratic penalization

Example 2. Consider:

$$
\inf _{(x, y) \in \mathbb{R}^{2}} \frac{1}{2}\left(x^{2}+(y-1)^{2}\right), \quad \text { subject to: } x=y
$$

Projection problem of the point $(0,1)$ on the line $\{(x, y) \mid y=x\}$.

Exercise. Verify the following statements.
■ Solution: $x^{*}=(0.5,0.5), \lambda^{*}=0.5$. Augmented Lagrangian:

$$
L_{c}(x, y, \lambda)=\frac{1}{2}\left(x^{2}+(y-1)^{2}\right)-\lambda(x-y)+\frac{c}{2}(y-x)^{2} .
$$

■ Solution of $\left(P_{c, \lambda}\right):\binom{x_{c}}{y_{c}}=\frac{1}{1+2 c}\binom{c+\lambda}{1+c-\lambda}$.

- There exists a constant M such that for all $c>0$,

$$
\left\|\left(x_{c}, y_{c}\right)-(\bar{x}, \bar{y})\right\| \leq M|\bar{\lambda}-\lambda| / c .
$$

Augmented Lagrangian

Figure: Level-sets $L_{c}(\cdot, \lambda)$, for $c=1$ and $\lambda=0$.

Augmented Lagrangian

Figure: Level-sets $L_{c}(\cdot, \lambda)$, for $c=1$ and $\lambda=0,25$.

Augmented Lagrangian

Figure: Level-sets $L_{c}(\cdot, \lambda)$, for $c=1$ and $\lambda=0,5$.

Augmented Lagrangian

Algorithm.

1 Input:
■ Initial point and multipliers $\left(x_{0}, \lambda_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$

- Initial penalty parameter $c_{0}>0$, initial tolerance $\varepsilon_{0}>0$
- Tolerance $\varepsilon>0$.

2 Set $k=0$.
3 While $\left\|D_{x} L\left(x_{k}, \lambda_{k}\right)\right\|>\varepsilon$ and $\left\|g\left(x_{k}\right)\right\|>\varepsilon$,

- Find x_{k+1} such that $\left\|D_{x} L_{c_{k}}\left(x_{k+1}, \lambda_{k}\right)\right\| \leq \varepsilon_{k}$.
- If $\left\|g\left(x_{k+1}\right)\right\|$ is small, set $\lambda_{k+1}=\lambda_{k}-c_{k} g\left(x_{k+1}\right)$. Reduce ε_{k}.
- Otherwise, increase c_{k}.
- Set $k=k+1$.

End while.
4 Output $\left(x_{k}, \lambda_{k}\right)$.

Lagrangian decomposition

Main ideas of Lagrangian decomposition methods:
■ We take $c=0$ in the augmented Lagrangian. At iterate k, given an approximation λ_{k} of the Lagrange multiplier, we solve

$$
\begin{equation*}
\inf _{x \in \mathbb{R}^{n}} L\left(x, \lambda_{k}\right) \tag{k}
\end{equation*}
$$

■ Given a solution x_{k+1}, the Lagrange multiplier is updated with

$$
\lambda_{k+1}=\lambda_{k}-\alpha g\left(x_{k+1}\right)
$$

where $\alpha>0 \rightarrow$ Uzawa's algorithm.

- The update of λ_{k} is an ascent gradient step for a maximization problem related to (P), called dual problem.

Lagrangian decomposition

Remarks.

■ Convergence of such methods can be established only under convexity assumptions.
■ The stepsize $\alpha>0$ must in general be small enough to ensure convergence. Instead of a fixed stepsize, one can use

$$
\lambda_{k+1}=\lambda_{k}-\alpha_{k} g\left(x_{k+1}\right),
$$

where $\alpha_{k}>0$ and where

$$
\sum_{k=0}^{\infty} \alpha_{k}=\infty \quad \text { and } \quad \sum_{k=0}^{\infty} \alpha_{k}^{2}=0
$$

Lagrangian decomposition

Main advantage of Lagrangian decomposition: very often the minimization of L can be "parallelized".

Standard case: additive constraints.

- Consider
$\inf _{\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}} f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right), \quad$ subject to: $g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)=d$,
where $f_{1}, f_{2}, X_{1}, X_{2}, g_{1}, g_{2}$, and d are given.
- Lagrangian:

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \lambda\right) & =f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\left\langle\lambda, g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)-d\right\rangle \\
& =[\underbrace{f_{1}\left(x_{1}\right)+\left\langle\lambda, g_{1}\left(x_{1}\right)\right\rangle}_{=: L_{1}\left(x_{1}, \lambda\right)}]+[\underbrace{f_{2}\left(x_{2}\right)+\left\langle\lambda, g_{2} x_{2}\right\rangle}_{=: L_{2}\left(x_{2}, \lambda\right)}]-\langle\lambda, d\rangle .
\end{aligned}
$$

Lagrangian decomposition

Given λ, the minimization of $L(\cdot, \lambda)$ is decomposed into two subproblems:

$$
\inf _{x_{1} \in \mathbb{R}^{n_{1}}} L_{1}\left(x_{1}, \lambda\right) \quad \text { and } \quad \inf _{x_{2} \in \mathbb{R}^{n_{2}}} L_{2}\left(x_{2}, \lambda\right)
$$

which can be solved independently. Very often the two subproblems are much easier to solve than the original problem.

Remark. Straightforward generalization to the case
$\inf _{\substack{x_{1}, \ldots, x_{K} \\ \in \mathbb{R}^{1} 1_{1} \times \ldots \mathbb{R}^{n}}} f_{1}\left(x_{1}\right)+\ldots+f_{K}\left(x_{K}\right), \quad$ s.t.: $g_{1}\left(x_{1}\right)+\ldots+g_{K}\left(x_{K}\right)=K$.
\rightarrow Decomposition in K subproblems (at each iteration).

Lagrangian decomposition

Decomposition

Coordination

Lagrangian decomposition

1. Application 1: space decomposition.

■ Two production units, with two independent production processes represented by the variables and constraints

$$
x_{1} \in X_{1} \quad \text { and } \quad x_{2} \in X_{2}
$$

- Costs: $f_{1}\left(x_{1}\right)$ and $f_{2}\left(x_{2}\right)$.
- Production of each unit: $g_{1}\left(x_{1}\right)$ and $g_{2}\left(x_{2}\right)$.

■ Coupling constraint: total production $=$ demand d, that is:

$$
g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)=d
$$

Lagrangian decomposition

Interpretation of the decomposition mechanism.

- A "centralizer" buys the production of each unit at a unitary price λ_{k}.
■ Each unit must optimize: $\inf _{x_{i} \in X_{i}} f_{i}\left(x_{i}\right)-\lambda_{k} g_{i}\left(x_{i}\right)$. Solution: $x_{i, k+1}$.
- If $g_{1}\left(x_{1, k+1}\right)+g_{2}\left(x_{2, k+1}\right)<d$, the total prod. is too small.
\rightarrow The incentive λ to produce is too small.
It must be increased.
If $g_{1}\left(x_{1, k+1}\right)+g_{2}\left(x_{2, k+1}\right)>d$, the total prod. is too large.
\rightarrow The incentive λ to produce is too big.
It must be decreased.
- This is consistent with the formula

$$
\lambda_{k+1}=\lambda_{k}-\alpha_{k+1}\left(g_{1}\left(x_{1, k+1}\right)+g_{2}\left(x_{2, k+1}\right)-d\right)
$$

Lagrangian decomposition

Application 2: time decomposition.

- A production process is decomposed over two periods.

■ Optimization variables:

- x_{1} : decisions specific to period 1
- x_{2} : decisions specific to period 2
- y : decisions involved at both periods.

Example: management of a stock of gas.

- Quantity withdrawn from the stock at period $i: x_{i}$.
- Level of stock between period 1 and period 2: y.

Lagrangian decomposition

- Abstract problem:

$$
\inf _{\substack{\left(x_{1}, x_{2}, y\right) \\\left(x_{1}, y\right) \in X_{1} \\\left(x_{2}, y\right) \in X_{2}}} f_{1}\left(x_{1}, y\right)+f_{2}\left(x_{2}, y\right) .
$$

■ Equivalent "decomposable" problem:

$$
\begin{aligned}
& \inf _{\left(x_{1}, x_{2}, y_{1}, y_{2}\right)} f_{1}\left(x_{1}, y_{1}\right)+f_{2}\left(x_{2}, y_{2}\right), \quad \text { subject to: } y_{2}-y_{1}=0 . \\
& \left(x_{1}, y_{1}\right) \in X_{1} \\
& \left(x_{2}, y_{2}\right) \in X_{2}
\end{aligned}
$$

■ Independent (w.r.t. time) sub-problems:

$$
\inf _{\left(x_{1}, y_{1}\right) \in X_{1}} f_{1}\left(x_{1}, y_{1}\right)+\lambda_{k} y_{1} \quad \text { and } \quad \inf _{\left(x_{2}, y_{2}\right) \in X_{2}} f_{2}\left(x_{2}, y_{2}\right)-\lambda_{k} y_{2} .
$$

Lagrangian decomposition

Application 3: stochastic decomposition.

- A production process is decomposed over two periods. A random event with two outcomes ω_{1} and ω_{2}, with probabilities p and $(1-p)$, arises inbetween.

■ Optimization variables:

- x_{1} : decisions taken if outcome ω_{1} arises
- x_{2} : decisions taken if outcome ω_{2} arises
- y : decisions taken before the random event.

Example: purchase of gas y on a day-ahead market (that is, on a given day for the next one).
Random event: temperature, which impacts consumption.

Lagrangian decomposition

- Abstract problem:

$$
\inf _{\substack{\left(x_{1}, x_{2}, y\right) \\\left(x_{1}, y\right) \in X \\\left(x_{2}, y\right) \in X}} p f\left(x_{1}, y, \omega_{1}\right)+(1-p) f\left(x_{2}, y, \omega_{2}\right) .
$$

■ Equivalent problem (with non-anticipativity constraint):

$$
\inf _{\substack{\left(x_{1}, x_{2}, y_{1}, y_{2}\right) \\\left(x_{1}, y_{1}\right) \in X \\\left(x_{2}, y_{2}\right) \in X}} p f\left(x_{1}, y_{1}, \omega_{1}\right)+(1-p) f\left(x_{2}, y_{2}, \omega_{2}\right), \quad \text { s.t. } y_{2}-y_{1}=0 \text {. }
$$

■ Independent (w.r.t. randomness) sub-problems:

$$
\inf _{\left(x_{1}, y_{1}\right) \in X_{1}} p f_{1}\left(x_{1}, y_{1}, \omega_{1}\right)+\lambda_{k} y_{1}, \quad \inf _{\left(x_{2}, y_{2}\right) \in X_{2}}(1-p) f_{2}\left(x_{2}, y_{2}, \omega_{2}\right)-\lambda_{k} y_{2} .
$$

1 Penalty methods for constrained optimization
■ Quadratic penalization

- Augmented Lagrangian
- Lagrangian decomposition

2 Projected gradient method

- Projection

■ Method
■ Combination with penalty methods

3 Interior point method

- Nonnegative variables
- General problems

Projection

The projected gradient method uses a mapping called projection defined below.

Lemma 3

Let $K \subset \mathbb{R}^{n}$ be a non-empty, convex, and closed set. For all $x_{0} \in \mathbb{R}^{n}$, there exists a unique solution to the problem

$$
\inf _{x \in \mathbb{R}^{n}}\left\|x-x_{0}\right\|^{2}, \quad \text { subject to: } x \in K
$$

It is called projection of x_{0} on K, and denoted $\operatorname{Proj}_{K}\left(x_{0}\right)$.

Remark. The projection depends on the chosen norm $\|\cdot\|$. For simplicity, we consider the Euclidean norm.

Projection

Example 1: projection on a cuboid.
Let K be described by

$$
K=\left\{x \in \mathbb{R}^{n} \mid \ell_{i} \leq x_{i} \leq u_{i}\right\}
$$

where the coefficients $\ell_{1}, \ldots, \ell_{n} \in \mathbb{R} \cup\{-\infty\}$ and $u_{1}, \ldots, u_{n} \in \mathbb{R} \cup\{+\infty\}$ are given.

Let $x \in \mathbb{R}^{n}$, let $y=\operatorname{Proj}_{K}(x)$. Then

$$
y_{i}=\min \left(\max \left(x_{i}, \ell_{i}\right), u_{i}\right), \quad \forall i=1, \ldots, n
$$

Projection

Figure: Projection on a cuboid.

Projection

Example 2: projection on a ball.
Let K be described by

$$
K=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{c}\right\| \leq R\right\}
$$

where $x_{C} \in \mathbb{R}^{n}$ and $R \geq 0$ are given.
For all $x \in \mathbb{R}^{n}$,

$$
\operatorname{Proj}_{K}(x)=x_{C}+\min \left(\left\|x-x_{C}\right\|, R\right) \frac{\left(x-x_{C}\right)}{\left\|x-x_{C}\right\|}
$$

Projection

Figure: Projection on a ball.

Projection

Example 3: cartesian product.
Let K be given by

$$
K=K_{1} \times K_{2}
$$

where K_{1} and K_{2} are given non-empty closed and convex subsets of $\mathbb{R}^{n_{1}}$ and $\mathbb{R}^{n_{2}}$.

Then for all $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{n_{1}+n_{2}}$,

$$
\operatorname{Proj}_{K}(x)=\left(\operatorname{Proj}_{K_{1}}\left(x_{1}\right), \operatorname{Proj}_{K_{2}}\left(x_{2}\right)\right) .
$$

Method

Optimization problem. Consider

$$
\inf _{x \in \mathbb{R}^{n}} f(x), \quad x \in K
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is given and differentiable and K is a given non-empty convex and closed subset of \mathbb{R}^{n}.

Numerical assumption: $\operatorname{Proj}_{K}(\cdot)$ is easy to compute.
Main idea: at iteration k, replace the search on the half line $\left\{x_{k}-\alpha \nabla f\left(x_{k}\right) \mid \alpha \geq 0\right\}$ used in unconstrained optimization by a search on

$$
\{\underbrace{\operatorname{Proj}_{K}\left(x_{k}-\alpha \nabla f\left(x_{k}\right)\right)}_{=: x_{k}(\alpha)} \mid \alpha \geq 0\} .
$$

Method

Technical aspects.

- Armijo's rule is replaced by the rule

$$
f\left(x_{k}(\alpha)\right) \leq f\left(x_{k}\right)+c_{1}\left\langle\nabla f\left(x_{k}\right), x_{k}(\alpha)-x_{k}\right\rangle .
$$

- The backstepping method can be used in this context.
- A possible stopping criterion is

$$
\left\|x_{k}(1)-x_{k}\right\| \leq \varepsilon .
$$

Combination with penalty methods

Consider the problem

$$
\inf _{x \in \mathbb{R}^{n}} f(x), \quad \text { subject to: } \quad \begin{cases}g_{i}(x)=0 & \forall i \in \mathcal{E} \\ g_{i}(x) \geq 0 & \forall i \in \mathcal{I}\end{cases}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are given and $(\mathcal{E}, \mathcal{I})$ is a partition of $\{1, \ldots, m\}$.

An equivalent formulation is

$$
\inf _{\substack{x \in \mathbb{R}^{n} \\
y \in \mathbb{R}^{m}}} f(x), \quad \text { subject to: }\left\{\begin{array}{l}
g(x)-y=0 \\
y \in K,
\end{array}\right.
$$

where: $K=\left\{y \in \mathbb{R}^{m} \left\lvert\,\left\{\begin{array}{ll}y_{i}=0 & \forall i \in \mathcal{E} \\ y_{i} \geq 0 & \forall i \in \mathcal{I}\end{array}\right\}\right.\right.$.

Combination with penalty methods

Main idea: projection on K (a cuboid) is easy to compute. Handle $y \in K$ with the projected gradient method.

Algorithm.
■ At iteration k, the iterates $x_{k} \in \mathbb{R}^{n}, y_{k} \in \mathbb{R}^{m}, \lambda_{k} \in \mathbb{R}^{m}$, and c_{k} are given.
■ Solve (approximately) the penalty problem:
$\inf _{\substack{x \in \mathbb{R}^{n} \\ y \in \mathbb{R}^{m}}} L_{c_{k}}\left(x, y, \lambda_{k}\right):=f(x)-\left\langle\lambda_{k}, g(x)-y\right\rangle+\frac{c_{k}}{2}\|g(x)-y\|^{2}$,
subject to: $y \in K$,
with the projected gradient method.
Use $\left(x_{k}, y_{k}\right)$ as a starting point.

1 Penalty methods for constrained optimization
■ Quadratic penalization

- Augmented Lagrangian
- Lagrangian decomposition

2 Projected gradient method

- Projection
- Method
- Combination with penalty methods

3 Interior point method
■ Nonnegative variables

- General problems

Nonnegative variables

Optimization problem. Consider

$$
\inf _{x \in \mathbb{R}^{n}} f(x), \quad \text { subject to: } x_{i} \geq 0, \forall i=1, \ldots, n
$$

Barrier function: given $c>0$, consider the function B_{c} defined by

$$
B_{c}(x)=f(x)-c \sum_{i=1}^{n} \ln \left(x_{i}\right)
$$

for all $x \in \mathbb{R}_{>0}^{n}:=\left\{y \in \mathbb{R}^{n} \mid y_{i}>0, \forall i=1, \ldots, n\right\}$.
Main idea: approximate (P) by

$$
\inf _{x \in \mathbb{R}_{>0}^{n}} B_{c}(x) .
$$

Nonnegative variables

General comments.
■ We have: $-\ln \left(x_{i}\right) \rightarrow \infty$ as $x_{i} \rightarrow 0$.
\rightarrow Feasible points close to the boundary of the feasible set are penalized (whatever the value of c).

- A strong modification of the cost function on the feasible set is undesirable.
\rightarrow The barrier parameter c should be ideally very small.
■ Problem $\left(P_{c}\right)$ can be solved with methods for unconstrained optimization.
The standard stepsize rules (Armijo,...) prevents us from getting to close to the boundary.
III-conditioning for small values of c.

Nonnegative variables

Example 1.

Consider

$$
\inf _{x \in \mathbb{R}} x, \quad \text { subject to: } x \geq 0
$$

- Solution: $\bar{x}=0$.
- Barrier function: $B_{c}(x)=x-c \ln (x)$.

$$
\nabla B_{c}(x)=1-\frac{c}{x}=0 \Longleftrightarrow x=c
$$

Since B_{c} is convex, $x_{c}:=c$ is the global solution to $\left(P_{c}\right)$.

- We have $x_{c} \underset{c \rightarrow 0}{\longrightarrow} 0$.

Nonnegative variables

Figure: Level-sets $B_{c}(\cdot)$, for various values of c

Nonnegative variables

Example 2.

Consider

$$
\inf _{(x, y) \in \mathbb{R}^{2}} \frac{1}{2}(y-1)^{2}+x, \quad \text { subject to: }\left\{\begin{array}{l}
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

- Solution: $(\bar{x}, \bar{y})=(0,1)$.
- Solution to the barrier problem: $\left(x_{c}, y_{c}\right)=\left(c, \frac{1+\sqrt{1+4 c}}{2}\right)$.

Nonnegative variables

Figure: Level-sets of $f(\cdot)$

Nonnegative variables

Figure: Level-sets of f, for $c=0.1$

Nonnegative variables

Figure: Level-sets of $B_{c}(\cdot)$, for $c=0.2$

Nonnegative variables

Figure: Level-sets of $B_{c}(\cdot)$, for $c=0.5$

Nonnegative variables

Figure: Level-sets of $B_{c}(\cdot)$, for $c=1$

Nonnegative variable

Interpretation with the KKT conditions.
Let \bar{x} be a solution to (P). Let $\bar{\lambda} \in \mathbb{R}^{n}$ be the associated Lagrange multiplier.

- Lagrangian: $L(x, \lambda)=f(x)-\langle\lambda, x\rangle$. Stationarity condition:

$$
\nabla_{x} L(\bar{x}, \bar{\lambda})=\nabla f(\bar{x})-\bar{\lambda}=0
$$

- Sign condition: $\bar{\lambda}_{i} \geq 0$.
- Complementarity condition: $\bar{x}_{i}>0 \Longrightarrow \bar{\lambda}_{i}=0$. Equivalently: $\bar{x}_{i} \bar{\lambda}_{i}=0$.

Nonnegative variable

Optimality conditions for the barrier problem.
■ For any $x \in \mathbb{R}_{>0}^{n}$ we denote $\frac{1}{x}=\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)$.

- Let x_{c} be a solution to $\left(P_{c}\right)$. We have

$$
\frac{\partial B_{c}}{\partial x_{i}}\left(x_{c}\right)=\frac{\partial f}{\partial x_{i}}\left(x_{c}\right)-\frac{c}{x_{i}}=0 .
$$

Therefore $\nabla B_{c}\left(x_{c}\right)=\nabla f\left(x_{c}\right)-\frac{c}{x_{c}}=\nabla_{x} L\left(x_{c}, \frac{c}{x_{c}}\right)$.

- Define $\lambda_{c}=\frac{c}{x_{c}} \in \mathbb{R}_{>0}^{n}$.

The pair $\left(x_{c}, \lambda_{c}\right)$ satisfies the KKT conditions approximately:

$$
\nabla L\left(x_{c}, \lambda_{c}\right)=0, \quad x_{c}, i \lambda_{c, i}=c, \forall i \in\{1, \ldots, n\}
$$

Nonnegative variables

Figure: Regularization of the complementarity condition

General problem

Consider

$$
\inf _{x \in \mathbb{R}^{n}} f(x), \quad\left\{\begin{aligned}
g_{E}(x) & =0 \\
g_{l}(x) & \geq 0
\end{aligned}\right.
$$

Equivalent formulation with slack variable:

$$
\inf _{x \in \mathbb{R}^{n}} f(x), \quad\left\{\begin{aligned}
g_{E}(x) & =0 \\
g_{l}(x)-y & =0 \\
y & \geq 0
\end{aligned}\right.
$$

General problems

Numerical approaches.
Approach 1:

- Replace $y \geq 0$ by a barrier term: $-c \sum_{i=1}^{n} \ln \left(y_{i}\right)$.
- Penalize the remaining equality constraints.

Approach 2:

- Replace $y \geq 0$ by a barrier term: $-c \sum_{i=1}^{n} \ln \left(y_{i}\right)$.
- Apply Newton's method to the KKT conditions associated with the obtained problem.

