Optimization Project in Energy ENT306

Laurent Pfeiffer
Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris

Institut Polytechnique de Paris

1 Introduction

$[2$ Deterministic model

Introduction

■ Main goal: programming numerical methods (Energy Management System) for a very simple model of a microgrid.

- Microgrid: a set consisting of the following elements:
- a small-size electrical load (a building, a few houses)
- a source of renewable energy (solar panels, a wind turbine)
- a storage device (Energy Storage System, a battery)
- a macrogrid (an access to a large-scale energy network).

Introduction

- Time scale: the decisions are taken every hour during the day.

■ Optimization variables (at each time step) :

- the amount of energy to be stored or withdrawn from the battery
- the amount of energy bought or sold to the network.
- Contraints:
- nonnegativity of variables
- evolution of the battery
- storage capacity of the battery.

■ Cost function:

- Cost of the energy bought on the network...
- minus the cost of the energy sold on the network.

Introduction

■ Main challenge:

- The electrical load and the production of renewable energy are random.
- No available probabilistic model, instead the history of electrical load and solar production.
- Tools and mathematical concepts:
- Dynamic programming (temporal aspect for decision process).
- Autoregressive processes.

■ Optimization is useful for...

- minimizing the management costs
- modelling random processes
- describing some functions, for which no analytical expression is available (interpolation).

Introduction

■ Philosophy:
■ Compromise between the complexity of stochastic modelling and solvability of the problem.
■ Emphasis on the mathematical approach. Maths concepts useful in other application contexts.

- We will work with models of increasing complexity.
- Warning:
- (Very) simplified models, with artificial data.
- The purpose is not to conclude on the relevance of the introduction of such or such technology.

Introduction

■ References :

- Le Franc, Carpentier, Chancelier, de Lara. EMSx: an Energy Management System numerical benchmark. Energy System, 2021.
- Hafiz, Awal, de Queiroz, Husain. Real-time Stochastic Optimization of Energy Storage Management using Rolling Horizon Forecasts for Residential PV Applications, 2019.
- Olivares et al. Trends in microgrid control. IEEE Transactions on smart grid, 2014.

Introduction

Organisation:

■ 6 units: January 11, January 18, January 25, January 26, February 1, February 2.
■ It is highly recommended to participate to all units.
■ Work in pairs (please form the groups by next week).

- Programming with Matlab.
- Evaluation: programming exercises to solve + work in class.

1 Introduction

2 Deterministic model

Deterministic model

■ Horizon: 24 hours, stepsize: 1 hour. Optimization over $T=24$ intervals.

- Optimisation variable :
$\square x(s)$: state of charge of the battery at time $s, s=1, \ldots, T+1$
■ $a(s)$: amount of electricity bought on the network $(s=1, \ldots, T)$.
■ $v(s)$: amount of energy sold on the network $(s=1, \ldots, T)$.
- Parameters:

■ $d(s)$: net demand of energy (load minus solar production) at time $s, s=1, \ldots, T$.
■ $P_{a}(s)$: unitary buying price of energy at time s

- $P_{v}(s)$: unitary selling price of energy at time s
- $x_{\text {max }}$: storage capacity of the battery.

Remark: the demand is supposed to be deterministic (that is to say, known in advance), for the moment.

Deterministic model

- Contraints:

$$
\begin{array}{rl}
■ & x(s+1)=x(s)-d(s)+a(s)-v(s), \forall s=1, \ldots, T \\
& x(1)=0 \\
& a(s) \geq 0, \forall s=1, \ldots, T \\
& v(s) \geq 0, \forall s=1, \ldots, T \\
& 0 \leq x(s) \leq x_{\max }, \forall s=1, \ldots T+1 .
\end{array}
$$

- Cost function to be minimized:

$$
J(x, a, v)=\sum_{s=1}^{T}\left(P_{a}(s) a(s)-P_{v}(s) v(s)\right) .
$$

The buying and selling prices P_{a} and P_{v} depend on time. It holds: $P_{a}(s)>P_{v}(s)$, so that it is useless to try to buy and sell electricity on the network at the same time!

Deterministic model

Exercise 1

1 Write the optimization problem in a form that is compatible with the function linprog of Matlab.
2 Write a Matlab program that solves the optimization problem corresponding to the deterministic model.

Deterministic model

Main idea behind dynamic programming:
■ We parametrize the problem to be solved \rightsquigarrow a sequence of problems of increasing complexity.
■ We look for a relation ("dynamic programming principle") between the optimal values of the different problems.

Parameters:
■ Initial time $t \in\{1, \ldots, T+1\}$.
■ Initial state-of-charge of the battery $y \in\left[0, x_{\text {max }}\right]$.
We are interested in the problem with $t=1$ and $y=0$.

Deterministic model

Parameterized problem:

$$
V(t, y)=\inf _{\substack{x(t), x(t+1), \ldots, x(T+1) \\ a(t), a(t+1), \ldots, a(T) \\ v(t), v(t+1), \ldots, v(T)}} \sum_{s=t}^{T} P_{a}(s) a(s)-P_{v}(s) v(s)
$$

under the constraints:

$$
\begin{aligned}
& \square \\
& x(s+1)=x(s)-d(s)+a(s)-v(s), \forall s=t, \ldots, T \\
& \\
& -x(t)=y \\
& \square(s) \geq 0, \forall s=t, \ldots, T \\
& \square(s) \geq 0, \forall s=t, \ldots, T \\
& \\
& 0 \leq x(s) \leq x_{\max }, \forall s=t, \ldots T+1
\end{aligned}
$$

The function V is called value function; it plays a crucial role, in particular in the treatment of the stochastic version of the problem.

Deterministic model

Theorem [Dynamic programming principle]

The following holds true:

$$
\begin{gathered}
V(t, y)=\inf _{(z, a, v) \in \mathbb{R}^{3}} \quad P_{a}(t) a-P_{v}(t) v+V(t+1, z) \\
\text { s.t.: }\left\{\begin{array}{l}
a \geq 0 \\
v \geq 0 \\
z=y-d(t)+a-v \\
0 \leq z \leq x_{\max }
\end{array}\right.
\end{gathered}
$$

(DP(t,y))
for all $t \in\{1, \ldots T\}$ and $y \in\left[0, x_{\max }\right]$ and

$$
V(T+1, y)=0
$$

Deterministic model

Computation of the value function

■ Let us suppose that the function $y \mapsto V(t+1, y)$ is known, with $t \in\{1, \ldots, T\}$. By solving $D P(t, y)$ for all possible values of y, we can compute $y \mapsto V(t, y)$.

■ In practice, we can only solve $D P(t, y)$ for a sample of values of $y \in\left[0, x_{\max }\right]$. We evaluate $V(t, y)$ for those values of y; then we interpolate.

- In that way, we can compute (an approximation of) the value function, in a recursive and backward fashion (from $T+1$ to 1).

Deterministic model

Solving the initial problem.

■ Let (z, a, v) denote a solution of $D P(1,0)$.
Let us set: $\bar{x}(2)=z, \bar{a}(1)=a, \bar{v}(1)=v$.
■ Let (z, a, v) be a solution of $D P(2, \bar{x}(2))$.
Let us set: $\bar{x}(3)=z, \bar{a}(2)=a, \bar{v}(2)=v$.
■ Let (z, a, v) be a solution of $D P(3, \bar{x}(3))$.
Let us set: $\bar{x}(4)=z, \bar{a}(3)=a, \bar{v}(3)=v$.

- ... and so on, until the resolution of $D P(T, \bar{x}(T))$.

Deterministic model

■ Let $y \in \mathbb{R}^{J}$ and let $z \in \mathbb{R}^{J}$. We consider a function f such that $z_{j}=f\left(y_{j}\right)$, for all $j=1, \ldots, J$.
■ We interpolate f with a second-order polynomial, by solving

$$
\inf _{\alpha \in \mathbb{R}^{3}} \sum_{j=1}^{J}\left(\alpha_{1}+\alpha_{2} y_{j}+\alpha_{3} y_{j}^{2}-z_{j}\right)^{2}
$$

■ Let $\bar{\alpha}$ be the solution. We get the approximation:

$$
f(y) \approx \bar{\alpha}_{1}+\bar{\alpha}_{2} y+\bar{\alpha}_{3} y^{2} .
$$

Exercise 2

Write a function interpolate implementing the interpolation with a second-order polynomial. Inputs: $J, y \in \mathbb{R}^{J}, z \in \mathbb{R}^{J}$. Outputs: $\alpha \in \mathbb{R}^{3}$.

Deterministic model

Exercise 3

Write a function DP_solve with output the solution (z, a, v) of problem $D P(t, y)$.

We assume that the function $V(t+1, \cdot)$ is approximated by a second-order polynomial, described by a coefficient $\alpha \in \mathbb{R}^{3}$.

Input: $t \in\{1, \ldots, T\}, y \in\left[0, x_{\text {max }}\right], \alpha \in \mathbb{R}^{3}$.

Deterministic model

Exercise 4

Write a function DP_backward which compute a polynomial approximation of V, in the form of a matrix $\alpha \in \mathbb{R}^{(T+1) \times 3}$, that is to say:

$$
V(t, y) \approx \alpha_{t, 1}+\alpha_{t, 2} y+\alpha_{t, 3} y^{2}
$$

We will proceed in a recursive fashion:
■ Given $\alpha_{t+1,1}, \alpha_{t+1,2}, \alpha_{t+1,3}$, evaluate $V\left(t, y_{j}\right)$ for all $j=1, \ldots, J$, where $y_{j}=(j-1) /(J-1) x_{\text {max }}$.
■ Calculate $\alpha_{t, 1}, \alpha_{t, 2}$, and $\alpha_{t_{3}}$ by interpolating the values of $V(t, \cdot)$.

Deterministic model

Exercise 5

Write a function DP_forward computing the solution to the original problem. We will first make use of DP_backward to get an approximation of the value function.

