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Control strategies

Random demand and decision process.

Two additional difficulties:

The demand d(t) is random.

No available mathematical model for d(t).

Adaptativity of the decision process.

At the beginning of the time interval 1, d(1) is revealed.

Then: decision of the variables a(1) and v(1).

At the beginning of the time interval 2, d(2) is revealed.

Then: decision of the variables a(2) et v(2).

Etc.
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Therefore, we can allow the following dependences:

a(1) and v(1) as a function of d(1)

a(2) and v(2) as a function of d(1) and d(2)

a(3) and v(3) as a function d(1), d(2), and d(3)

Etc.

The number of possibilities increases exponentially with the
number of time steps!
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Demand scenarios.

We call demand scenario a vector (D(s))s=1,...,T .
Two set of scenarios are available:

Training set DT : history of NT demand scenarios.
Used to build a probabilistic model for the demand and an
appropriate control strategy.

Simulation set DS : history of NS demand scenarios.
Used to test the control strategies. Avoid to build biased
strategies.
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Shifting of the time index.

The two available histories of demand scenarios contain T0 values
of the demand from the “previous day”, corresponding to the time
intervals 0, −1, −2,...,−(T0 − 1).

On the computer: a demand scenario is a vector of size T + T0.
The traning and simulation sets are matrices with (T + T0)
columns and respectively NT and NS rows.

We “get access” to the demand at time t, for the scenario ` with

DT (`, t + T0) DS(`, t + T0).
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Online and offline phases.

We compute the decision variables in two steps.

1. Offline phase. We compute a variable I which synthesizes all
the available information, depending only on DT and the
global parameters (xmax, Pa, Pv ). For example, I can contain
statistical data for DT and coefficients describing some value
function.
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2. Online phase. Given a demand scenario D ∈ RT+T0 , the
buying and selling decisions are taken at any time s = 1, ...,T
with the help of some function φ in the following way:

(a(s), v(s)) = φ
(
s, x(1), ..., x(s),D(1), ...,D(T0+s), I

)
. (∗)

Here the variables x(1),...,x(s) denote the state-of-charge of
the battery at times 1,...,s.

We call control strategy the pair (I, φ).
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Remarks.

The mecanism is non-anticipative. At time s, we only use
the revealed values of the demand (those until time s) and
our a priori knowledge of the demand process, represented by
the I.

Feasibility. The function φ must be such that

x(s + 1) = x(s) + a(s)− v(s)− D(T0 + s) ∈ [0, xmax],

for any possible demand scenario.
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Cost and evaluation of a control strategy.

Let us fix I and φ. Given a demand scenario D ∈ RT+T0 , we
denote

JI,φ(D) =
T∑
s=1

(
Pa(s)a(s)− Pv (s)v(s)

)
,

where (a(s))s=1,...,T and (v(s))s=1,...,T are computed with the help
of (∗).

We set

JI,φ =
1

NS

NS∑
`=1

JI,φ(DS(`, ·)).

This number measure the efficiency of the strategy. Remember
that the history DS is used only for evaluating the control strategy.
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We program a control strategy in three steps:

Offline phase: we program I.
We use DT .

Online phase: we program φ and JI,φ.
We use I.

Evaluation phase: we compute JI,φ.
We use JI,φ(D) and DS .
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A lower bound for the cost
Given a demand scenario D ∈ RT+T0 , we denote Janti(D) the
optimal cost obtained, assuming that D is entirely known. We
denote

Janti =
1

NS

NS∑
`=1

Janti(DS (`,·)).

The number Janti is a lower bound for the evaluation cost of any
(feasible and non-anticipative) strategy.

Exercise 6

Write a function lower bound which computes Janti. To this
purpose, use the functions already written in exercise 1. Pay
attention to the shifiting of time indices.
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1. The naive strategy.

Offline phase: I = ∅. We do not exploit DT .

Online phase: at time s, given the demand d(s), we chose

(a(s), v(s)) =

{
(d(s), 0), si d(s) ≥ 0,

(0,−d(s)), si d(s) ≤ 0 .

Exercise 7

Verify that the naive strategy is non-anticipative and feasible.
Write a function naive online which computes the decision
variables and the cost associated with a demand scenario (given in
input). Write a function naive eval which computes the cost of
the cost of the strategy.
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2. The reasonable strategy

Offline phase: I = ∅. Again, we do not exploit DT .

Online phase: at time s, given the demand d(s) and the state
of charge x(s):

if d(s) ≥ 0: we dip into the reserve x(s) and we buy electricity
if d(s) ≥ x(s).
If d(s) ≤ 0: we stock energy in the battery as much as
possible; if d(s) ≤ x(s)− xmax, the surplus is sold.

Exercise 8

Verify that the strategy is non-anticipative and feasible. Write two
function raisonnable online and raisonnable eval

implementing and testing this strategy.
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Autoregressive processes

Generalities.

We look for a stochastic model describing faithfully the
evolution of the demand with respect to time.

This model should be of reasonable complexity, so that it
can be exploited numerically.

We are interested in autoregressive processes, for which an
approach by dynamic programming can be implemented.
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Autoregressive processes

Processes of order 0.

We suppose that the demands d(1), d(2),...,d(T ), are T
independent random variables. Thus we do not need to identify
any correlation between them, but we need to identify the
probability distribution of each random variable.

Given t, we approximate d(t) with a random variable which can
take NE different values with probability p := 1/NE . This values
are obtained by sampling.
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Sampling.

Let h ∈ RNT be a given vector, that we need to sample with nE
values. The result of the procedure is a vector z ∈ RNE .

To simplify, we will assume that q := NT/NE is an integer.

Let h̃ be the vector obtained by sorting the values of h, from
the smallest value to the largest one.

We define z as follows:

z(1) =
1

q

q∑
`=1

h̃(`), z(2) =
1

q

2q∑
`=q+1

h̃(`), ...

z(NE ) =
1

q

NT∑
`=NT−q+1

h̃(`).
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Exercise 9

Write a fonction sample realising the sampling of an arbitrary
vector h in NE values. Use the function sort of Matlab.

Write a function sample training set with output a matrix
E ∈ RNE×T such that each column contains the sampled
values of the vectors

DT (:,T0 + 1), DT (:,T0 + 2), ... DT (:,T0 + T ).
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Definition

We call white noise a sequence of independent random variables
(ε(t))t=1,... with null expectation.

Definition

We call the process d(t) an autoregressive process of order I ∈ N if
there exist deterministic coefficients γ(t), β1(t),...,βI (t) and a
white noise (ε(t))t such that:

d(t) = γ(t) + β1(t)d(t − 1) + ...+ βI (t)d(t − I ) + ε(t).
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Numerical approximation.
We propose the following method to approximate an autoregressive
process d(t) of order I . We proceed in two steps:

For all t = 1, ...,T , compute the solution (γ̄, β̄1, ..., β̄I ) to

inf
γ,β1,...,βp∈R

NT∑
`=1

(
DT (`, t+T0)−

(
γ+

I∑
i=1

βiDT (`, t+T0− i)
))2

We set γ(t) = γ̄, β1(t) = β̄1,...,βI (t) = β̄I .

We sample the variable ε(t, `), given by

ε(`, t) = DT (`, t + T0)−
(
γ(t) +

I∑
i=1

βi (t)DT (`, t + T0− i)
)
.
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Exercise 10

Write a function auto reg 1 realizing the approximation of d(t)
as an autoregressive process of order 1
Output variables: γ ∈ RT , β1 ∈ RT , E ∈ RNE×T .

Optional. Write a function auto reg which realizes the
approximation of d(t) by an autoregressive process of arbitrary
order (given as input variable).
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Predictive model.

Phase offline. Approximation of d(t) with an autoregressive
process of order 1, with the help of coefficients γ and β1.

Phase online. Let t be the current time step. Let xt denote the
current state-of-charge of the battery and let dt denote the
demand at time t.

1. Prediction. Compute (Dp(s))s=t,...T as follows:

Dp(t) = dt ,

Dp(t + 1) = γ(t + 1) + β1(t + 1)Dp(t),

Dp(t + 2) = γ(t + 2) + β(t + 2)Dp(t + 1),

...

Dp(T ) = γ(T ) + β(T )Dp(T ).
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Predictive method

2. Optimization. We solve:

inf
x(t),...,x(T+1)
a(t),...,a(T )
v(t),...,v(T )

T∑
s=t

Pa(s)a(s)− Pv (s)v(s)

s.t.



x(s + 1) = x(s) + a(s)− v(s)− Dp(s), s = t, ...T

x(t) = xt

a(s) ≥ 0, s = t, ...,T

v(s) ≥ 0, s = t, ...,T

0 ≤ x(s) ≤ xmax, s = t, ...,T

Let x̄(t), ..., x̄(T + 1), ā(t), ..., ā(T ), v̄(t), ..., v̄(T ) be a
solution. We take:

a(t) = ā(t), v(t) = v̄(t).
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Predictive method

Exercise 11

Implement the predictive method described above.
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Case of an autoregressive process of order 0.

We suppose that the demande d(t) is described by an
autoregressive process of order 0, that is, all the random variables
d(1),...,d(T ) are independent.

We suppose that a matrix (D(j , t))j=1,...,NE
t=1,...,T

is given and that

P
[
d(t) = D(j , t)] =

1

NE
,

for all j = 1, ...,NE and for all t = 1, ...,T .
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From now on, we need to work with two value functions:

V (t, x): the expectation of the optimal cost (from t to T ),
with initial state-of-charge x at time t, before the demand
d(t) is revealed.

Ṽ (t, x , dt): the expectation of the optimal cost (from t to
T ), with initial state-of-charge x at time t, conditionally to
d(t) = dt .
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Theorem

The following holds true.

For all x ∈ [0, xmax], V (T + 1, x) = 0.

For all t = 1, ...,T , for all x ∈ [0, xmax],

V (t, x) =
1

NE

NE∑
j=1

Ṽ (t, x ,D(j , t)).

For all t = 1, ...,T , for all x ∈ [0, xmax],

Ṽ (t, x , d) = inf
(z,a,v)∈R3

Pa(t)a− Pv (t)v + V (t + 1, z), (DP(t, x , d))

sous la contrainte :


z = x + a− v − d ,

0 ≤ z ≤ xmax,

a ≥ 0, v ≥ 0.
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Phase offline: numerical approximation of V (·, ·).

The mechanism is similar to the one seen in the deterministic
framework.
Let t ∈ {1, ...,T}. Let us suppose V (t + 1, ·) that is known and
represented as a polynomial function.

We calculate Ṽ (t, xj ,D(k, t)) for all j = 1, ..., J and for all
k = 1, ...,NE , by solving (DP(t, xj ,D(k, t)).

We calculate V (t, xj) for all j = 1, ..., J.

We approximate the full function V (t, ·) by approximation.

Phase online : at time t, when the demand d(t) has been revealed,
we solve (DP(t, x , d)), with x the current state-of-charge at time t
and d = d(t).
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Exercise 12

Implement the control strategy induced by the dynamic
programming principle with the auto-regressive model of order zero.
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Case of a first-order autoregressive process.
We suppose that the demand d(t) is described by a first-order
autoregressive process, that is:

d(t) = γ(t) + β1(t)d(t − 1) + ε(t),

where (ε(t))t=1,...,T is a white noise.

We suppose that a matrix (E (k , t))k=1,...,NE
t=1,...,T

is given and

P
[
ε(t) = E (k , t)

]
=

1

NE
,

for all k = 1, ...,NE , and for all t = 1, ...,T .
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We consider two value functions:

V (t, x , dt−1): the optimal expected cost (from t to T ), with
state-of-charge x at time t, knowing that d(t − 1) = dt−1,
before that d(t) is revealed.

Ṽ (t, x , dt): the optimal expected cost, with state-of-charge x
at time t, knowing that d(t) = dt .
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Theorem

The following holds true.

For all x ∈ [0, xmax], V (T + 1, x , dT ) = 0.

For all t = 1, ...,T , for all x ∈ [0, xmax],

V (t, x , dt−1) =
1

NE

NE∑
k=1

Ṽ (t, x , γ(t) + β1(t)dt−1 + E (k, t)).

For all t = 1, ...,T , for all x ∈ [0, xmax],

Ṽ (t, x , dt) = inf
(z,a,v)∈R3

Pa(t)a− Pv (t)v + V (t + 1, z , dt),

subject to:


z = x + a− v − dt ,

0 ≤ z ≤ xmax,

a ≥ 0, v ≥ 0.

(DP(t, x , dt))
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Remark. The value function (at time t) depends on two variables.
We can seek for an approximation with a second-order polynomial
of the form:

V (t, x , dt−1) =α1(t) + α2(t)x + α3(t)dt−1

+ α4(t)x2 + α5(t)xdt−1 + α6(t)d2
t−1.
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