1. INTRODUCTION

Our results so far were based on optimality conditions (Pontryagin’s principle).
Now: a different approach, based on dynamic programming.
In some sense, more specific to optimal control.
The dynamic programming principle is ubiquitous in optimization. A very general concept allowing to “split” some problems into a family of simpler problems.
The central tool: the value function V.
- Defined as the value of the optimization problem, expressed as a function of the initial state.
- Characterized as the unique viscosity solution of a non-linear partial differential equation (PDE) called HJB equation.

Problem formulation
Data of the problem and assumptions:
- A parameter $\lambda > 0$.
- A non-empty and compact subset U of \mathbb{R}^m.
- A bounded and L_f-Lipschitz continuous mapping $f: (u, y) \in U \times \mathbb{R}^n \rightarrow \mathbb{R}^n$, i.e.
 \[\| f \|_{\infty} := \sup_{(u, y) \in U \times \mathbb{R}^n} \| f(u, y) \| < \infty \]
 \[\| f(u_2, y_2) - f(u_1, y_1) \| \leq L_f \| (u_2, y_2) - (u_1, y_1) \|, \]
 for all (u_1, y_1) and $(u_2, y_2) \in U \times \mathbb{R}^n$.
- A bounded and L_γ-Lipschitz continuous mapping $\gamma: (u, y) \in U \times \mathbb{R}^n \rightarrow \mathbb{R}$.

Problem formulation
Notation: for any $\tau \in [0, \infty]$, \mathcal{U}_τ is the set of measurable functions from $(0, \tau)$ to U.
State equation: for $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_\infty$, there is a unique solution $y[u, x]$ to the ODE
\[\dot{y}(t) = f(u(t), y(t)), \quad y(0) = x, \]
by the Picard-Lindelöf theorem (Cauchy-Lipschitz).
Cost function W, for $u \in \mathcal{U}_\infty$ and $x \in \mathbb{R}^n$:
\[W(u, x) = \int_0^\infty e^{-\lambda t} \gamma(u(t), y[u, x](t)) \, dt. \]
Optimal control problem and value function V:
\[V(x) = \inf_{u \in \mathcal{U}_\infty} W(u, x). \quad (P(x)) \]

Grönwall’s lemma
Lemma 1. (Grönwall’s lemma). Let $\alpha > 0$ and let $\beta > 0$. Let $\theta: [0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that
\[\theta(t) \leq \alpha + \beta \int_0^t \theta(s) \, ds, \quad \forall t \in [0, \infty). \]
Then, $\theta(t) \leq \alpha e^{\beta t}$, for all $t \in [0, \infty)$.
Corollary 2. Let $u \in \mathcal{U}_\infty$. For all x and \tilde{x}, for all $t \geq 0$, it holds:
\[\| y[u, x](t) - y[u, \tilde{x}](t) \| \leq e^{\frac{\beta}{2} t} \| x - \tilde{x} \|. \]
Proof. Grönwall’s lemma with $\theta = \| y[u, x] - y[u, \tilde{x}] \|$, $\alpha = \| x - \tilde{x} \|$, $\beta = L_f$.
2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle). Let \(\tau > 0 \). Then for all \(x \in \mathbb{R}^n \), abbreviating \(y = y[u,x] \),
\[
V(x) = \inf_{u \in \mathcal{U}} \left(\int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, dt + e^{-\lambda \tau} V(y(\tau)) \right).
\]

(\textit{DPP})

Interpretation:
- \(V(x) \) is the value function of an optimal control problem on the interval \((0, \tau) \).
- The original integral has been truncated:
\[
\int_0^\infty e^{-\lambda t} \ell(u(t), y(t)) \, dt \sim e^{-\lambda \tau} V(y(\tau)).
\]

The term \(e^{-\lambda \tau} V(y(\tau)) \) is the “optimal cost from \(\tau \) to \(\infty \).

[Flow property]

Lemma 4. (Flow property). Let \(x \in \mathbb{R}^n \) and let \(u \in \mathcal{U}_\infty \). Define:
- \(u_1 = u|_{(0, \tau)} \in \mathcal{U}_\tau \)
- \(u_2 = u|_{(\tau, \infty)} \in L^\infty(\tau, \infty; \mathcal{U}) \)
- \(\tilde{u}_2 \in \mathcal{U}_\infty, u_2(t) = \tilde{u}_2(t + \tau) \).

It holds:
\[
y[u,x](t) = y[\tilde{u}_2, y[u_1, x](\tau)](t - \tau),
\]
for any \(t \geq \tau \).

Remark. After time \(\tau \), one can forget \(u_1 \) and only remember \(y[x, u_1](\tau) \).

[Proof]

Proof of the DP-principle. Let us denote
\[
\tilde{V}(x) = \inf_{u \in \mathcal{U}} \left(\int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, dt + e^{-\lambda \tau} V(y(\tau)) \right).
\]

Step 1: \(V \geq \tilde{V} \). Let \(u, u_1, u_2 \), and \(\tilde{u}_2 \) be as in Lemma 4.
\[
W(u, x) = \int_0^\infty e^{-\lambda t} \ell(u(t), y[u, x](t)) \, dt
\]
\[
= \int_0^\tau e^{-\lambda t} \ell(u(t), y[u, x](t)) \, dt \\
+ e^{-\lambda \tau} \int_\tau^\infty e^{-\lambda (t - \tau)} \ell(u(t), y[u, x](t)) \, dt \\
= \int_0^\tau e^{-\lambda t} \ell(u(t), y[u, x](t)) \, dt \\
+ e^{-\lambda \tau} \int_0^\infty e^{-\lambda s} \ell(u(s + \tau), y[u, x](s + \tau)) \, ds.
\]

[Proof]

We further have, for the last integral:
\[
\int_0^\infty e^{-\lambda s} \ell(u(s + \tau), y[u, x](s + \tau)) \, ds
\]
\[
= \int_0^\infty e^{-\lambda t} \ell(\tilde{u}_2(s), y[\tilde{u}_2, y[u_1, x](\tau)](s)) \, ds
\]
\[
= W(\tilde{u}_2, y[u_1, x](\tau)) \geq V(y[u_1, x](\tau)).
\]

Injecting in the above equality:
\[
W(u, x) \geq \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) \, dt \\
+ e^{-\lambda \tau} V(y[u_1, x](\tau)) \\
\geq \tilde{V}(x).
\]

Minimizing with respect to \(u \) yields \(V \geq \tilde{V} \).

[Proof]

Step 2: \(\tilde{V} \leq V \). Let \(\varepsilon > 0 \). Let \(u_1 \in \mathcal{U}_\tau \) be such that
\[
\int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) \, dt + e^{-\lambda \tau} V(y[u_1, x](\tau)) \\
\leq \tilde{V}(x) + \varepsilon / 2.
\]

Let \(\tilde{u}_2 \in \mathcal{U}_\infty \) be such that
\[
W(\tilde{u}_2, y[u_1, x](\tau)) \leq V(y[u_1, x](\tau)) + \varepsilon / 2.
\]

Let \(u \) be defined by
\[
u(t) = \begin{cases}
 u_1(t) & \text{for a.e. } t \in (0, \tau), \\
 \tilde{u}_2(t - \tau) & \text{for a.e. } t \in (\tau, \infty).
\end{cases}
\]

[Proof]

The same calculation as above yields:
\[
W(u, x) = \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) \, dt \\
+ e^{-\lambda \tau} \int_0^\tau e^{-\lambda (t - \tau)} \ell(\tilde{u}_2(t), y[\tilde{u}_2(t), y[u_1, x](\tau)](t)) \, dt \\
= W(\tilde{u}_2, y[u_1, x](\tau)).
\]

Therefore,
\[
W(u, x) \leq \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) \, dt \\
+ e^{-\lambda \tau} (V(y[u_1, x](\tau)) + \varepsilon / 2)
\leq \tilde{V}(x) + \varepsilon.
\]

It follows that
\[
V(x) \leq \tilde{V}(x) + \varepsilon, \quad \forall \varepsilon > 0.
\]
3. A FIRST CHARACTERIZATION OF THE VALUE FUNCTION

[Decoupling]

Corollary 5. Let \(u \in \mathcal{U}_\infty \) be a solution to \(P(x) \).

Let \(\tau > 0 \). Let \(u_1 \) and \(\tilde{u}_2 \) be defined as in Lemma 4. Then,

- \(u_1 \) is optimal in the DP principle
- \(\tilde{u}_2 \) is optimal for \(P(y[u_1, x](\tau)) \).

Proof. Step 1: We have \(u(t) = \begin{cases} u_1(t) & \text{for a.e. } t \in (0, \tau) \\ \tilde{u}_2(t - \tau) & \text{for a.e. } t \in (\tau, \infty). \end{cases} \)

Then \(u \) is a solution to \(P(x) \).

What can we do with the value function? If \(V \) is known, then the DP-principle allows to **decouple** the problem in time.

[Regularity of V]

Lemma 6. The value function \(V \) is bounded. It is also uniformly continuous, that is, for all \(\varepsilon > 0 \), there exists \(\alpha > 0 \) such that for all \(x \) and \(\tilde{x} \in \mathbb{R}^n \),

\[
\|\tilde{x} - x\| \leq \alpha \implies |V(\tilde{x}) - V(x)| \leq \varepsilon.
\]

Proof. Step 1: proof of boundedness. Let \(x \in \mathbb{R}^n \) and \(u \in \mathcal{U}_\infty \). We have

\[
|W(x, u)| \leq \int_0^\infty e^{-\lambda t} \|\ell\| \|\ell\| \ dt \leq \frac{1}{\lambda} \|\ell\| \|\ell\|.
\]

Thus \(|V(x)| \leq \frac{1}{\lambda} \|\ell\| \|\ell\| \).

[More regularity of V]

Lemma 7. We have

- if \(\lambda < L_f \), then \(V \) is \((\lambda/L_f)\)-Hölder continuous
- if \(\lambda = L_f \), then \(V \) is \(\alpha \)-Hölder continuous for all \(\alpha \in (0,1) \)
- if \(\lambda > L_f \), then \(V \) is Lipschitz continuous.

DP-mapping

Notation: \(\text{BUC}(\mathbb{R}^n) \) is the set of bounded and uniformly continuous functions from \(\mathbb{R}^n \) to \(\mathbb{R} \).

Lemma 8. The space \(\text{BUC}(\mathbb{R}^n) \), equipped with the uniform norm (denoted \(\| \cdot \|_\infty \)) is a Banach space.

Fix \(\tau > 0 \). Consider the “DP-mapping” (also called Bellman operator):

\[
T : v \in \text{BUC}(\mathbb{R}^n) \mapsto T v \in \text{BUC}(\mathbb{R}^n),
\]

defined by

\[
Tv(x) = \inf_{u \in \mathcal{U}_t} \left(\int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \ dt + e^{-\lambda T} v(y(\tau)) \right),
\]

where \(y = y[u, x] \).
We fix now
We conclude that
Proof.
Proof.
Lemma 10.
The value function $\|x - x\| \leq 0 \implies \|v(\tilde{x}) - v(x)\| \leq \varepsilon/2$. Let $\alpha > 0$. Let x and $\tilde{x} \in \mathbb{R}^n$ be such that $\|x - \tilde{x}\| \leq \alpha$. The value of α will be fixed later. For all $u \in U$, for all $t \in [0, \tau]$, we have
\[
\|y[u, \tilde{x}](t) - y[u, x](t)\| \leq e^{\varepsilon/\tau} \|x - \tilde{x}\| \leq e^{\varepsilon/\tau} \alpha.
\]
We have $|Tv(\tilde{x}) - Tv(x)| \leq \Delta_1 + \Delta_2$, with...

[DP-mapping]

\[
\begin{align*}
\Delta_1 &= \sup_{u \in \mathcal{U}} \left| \int_0^\tau e^{-\lambda \tau}(u(t), y(t)) dt \right. \\
&\quad - \left. \int_0^\tau e^{-\lambda \tau}(u(t), \tilde{y}(t)) dt \right|,
\Delta_2 &= \sup_{u \in \mathcal{U}} \left| e^{-\lambda \tau}v(\tilde{y}(\tau)) - e^{-\lambda \tau}v(y(\tau)) \right|
\end{align*}
\]
We fix now $\alpha = e^{-\lambda \tau} \min \left(\alpha_0, \frac{\varepsilon}{2\tau} \right)$. We have
\[
\Delta_1 \leq \tau \lambda e^{\tau \lambda \alpha} \leq \varepsilon/2 \quad \text{and} \quad \Delta_2 \leq \varepsilon/2,
\]
since $\|\tilde{y}(\tau) - y(\tau)\| \leq e^{\varepsilon/\tau} \alpha \leq \alpha_0$. Therefore,
\[
|Tv(\tilde{x}) - Tv(x)| \leq \varepsilon.
\]

[Min-plus linearity]

Notation. Given v_1 and $v_2 \in \text{BUC}(\mathbb{R}^n)$, we write $v_1 \preceq v_2$ if $v_1(x) \leq v_2(x)$ for all $x \in \mathbb{R}^n$. We define $\min(v_1, v_2) \in \text{BUC}(\mathbb{R}^n)$ by
\[
\min(v_1, v_2)(x) = \min(v_1(x), v_2(x)), \quad \forall x \in \mathbb{R}^n.
\]
Given $\alpha \in \mathbb{R}$, we define $v_1 + \alpha$ by $(v_1 + \alpha)(x) = v_1(x) + \alpha$.

Lemma 11. Let v_1 and $v_2 \in \text{BUC}(\mathbb{R}^n)$. Let $\alpha \in \mathbb{R}$. The map T is monotone:
\[
v_1 \preceq v_2 \implies Tv_1 \preceq Tv_2
\]
and min-plus linear:
\[
\min(Tv_1, Tv_2) = T \min(v_1, v_2), \quad T(v + \alpha) = (Tv) + e^{-\lambda \tau} \alpha.
\]
Proof: exercise.

4. HJB EQUATION: THE CLASSICAL SENSE

[Hamiltonian]
We define the pre-Hamiltonian H and the Hamiltonian H by
\[
H(u, x, p) = \ell(u, x) + \langle p, f(u, x) \rangle, \quad \Phi(x, p) = \min_{u \in \mathcal{U}} H(u, x, p).
\]
Lemma 12. The mapping H is continuous, concave with respect to p, and Lipschitz continuous with respect to p with modulus $\|f\|_{\infty}$.
Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As an infimum of concave functions, H is concave. We have:
\[
\|H(x, \tilde{p}) - H(x, p)\| \leq \sup_{u \in \mathcal{U}} \|H(u, x, \tilde{p}) - H(u, x, p)\|
\]
\[
\leq \sup_{u \in \mathcal{U}} |\langle \tilde{p} - p, f(u, x) \rangle| \leq \|\tilde{p} - p\| \cdot \|f\|_{\infty}.
\]

[A characterization of V]

Lemma 10. The value function V is the unique solution of the fixed-point equation:
\[
Tv = v, \quad v \in \text{BUC}(\mathbb{R}^n).
\]
Proof.
- Existence: direct consequence of the DP principle ($V = TV$).
- Uniqueness: for any v such that $v = Tv$, we have $\|v - V\|_{\infty} = \|Tv - TV\|_{\infty} \leq e^{-\lambda \tau} \|v - V\|_{\infty}$.
Thus $v = V$.

Remark: the dynamic programming principle entirely characterises the value function!

[Informal derivation]

Notation: $C^1(\mathbb{R}^n)$, the set of continuously differentiable functions from \mathbb{R}^n to \mathbb{R}.
Lemma 13. Let $\Phi \in C^1(\mathbb{R}^n)$. Let $x \in \mathbb{R}^n$, let $u \in \mathcal{U}_{\infty}$, let $y = y[u, x]$. Consider the mapping:
\[
\varphi: \tau \in [0, \infty) \mapsto \int_0^\tau e^{-\lambda \tau}(u(t), y(t)) dt + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x).
\]
Then $\varphi(0) = 0$ and $\varphi \in W^{1, \infty}(0, \infty)$ with
\[
\varphi(\tau) = e^{-\lambda \tau} \left(H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \right).
\]
In particular: $\varphi(0) = H(u(0), x, \nabla \Phi(x)) - \lambda \Phi(x)$ (if u is continuous at 0).
Informal derivation
Proof. To simplify, we only consider the case where \(u \) is continuous, so that \(y \) is \(C^1 \) and \(\varphi \) is \(C^1(\mathbb{R}^n) \). We have then:
\[
\varphi(\tau) = e^{-\lambda\tau} \ell(u(\tau), y(\tau)) + e^{-\lambda\tau} (\nabla \Phi(y(\tau)), \dot{y}(\tau)) - \lambda e^{-\lambda\tau} \Phi(y(\tau))
\]
\[
= e^{-\lambda\tau} \left[\ell(u(\tau), y(\tau)) + (\nabla \Phi(y(\tau)), f(u(\tau), y(\tau))) \right] - \lambda e^{-\lambda\tau} \Phi(y(\tau))
\]
\[
= e^{-\lambda\tau} \left[H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \right].
\]

HJB in the classical sense

Theorem 14. Let \(x \in \mathbb{R}^n \). Assume that

- \(V \) is continuously differentiable in a neighborhood of \(x \)
- \(P(x) \) has a solution \(\bar{u} \) which is continuous at time 0.

Then, \(\lambda V(x) - H(x, \nabla V(x)) = 0 \), \(\bar{u}(0) \in \text{argmin}_{u \in U} H(u_0, x, \nabla V(x)) \).

Proof. Step 1. Let \(u_0 \in U \), let \(u \) be the constant control equal to \(u_0 \), let \(y = y[u, x] \). By the dynamic programming principle, we have:
\[
0 \leq \varphi(\tau) := \int_0^\tau e^{-\lambda \tau} \ell(u(t), y(t)) \, dt + e^{-\lambda \tau} V(y(\tau)) - V(x),
\]
for all \(\tau \). Since \(\varphi(0) = 0 \), we deduce from (\star) that:
\[
0 \leq \varphi(0) = H(u_0, x, \nabla V(x)) - \lambda V(x).
\]
Therefore,
\[
0 \leq H(u_0, x, \nabla V(x)) - \lambda V(x), \quad \forall u_0 \in U.
\]

HJB in the classical sense
Remarks.
Let \(Q(u, y) := H(u, y, \nabla V(y)) \) and assume that \(V \in C^2(\mathbb{R}^n) \).

- If the minimizer is unique in the following relation, we have a feedback law:
 \[
 \bar{u}(t) = \text{argmin}_U Q(\cdot, \dot{y}(t)).
 \]

- In some cases, one can show that \(\nabla V(\dot{y}(t)) = p(t) \), where \(p \) is defined by some adjoint equation → Pontryagin’s principle.

- In Reinforcement Learning, the approximation of \(Q \) is a central objective.

We will call the equation
\[
\lambda v(x) - H(x, \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n \quad \text{(HJB)}
\]
the Hamilton-Jacobi-Bellman equation, with unknown \(v: \mathbb{R}^n \to \mathbb{R} \).

Remarks.
- In general \(V \) is not differentiable → in which sense is the HJB equation to be understood?
- In Theorem 14, we have shown that \(\bar{u}(t) \in \text{argmin}_{u \in U} H(u_0, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x])) \), (under restrictive assumptions). We will see next that this necessary condition is also sufficient.

Theorem 16. (Verification). Let us assume the assumptions of Theorem 14 hold for all \(x \in \mathbb{R}^n \), so that the HJB equation is satisfied in the classical sense. Let \(x \in \mathbb{R}^n \). Assume that there exists a control \(\bar{u} \) such that
\[
\bar{u}(t) \in \text{argmin}_{u \in U} H(u_0, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x])),
\]
where \(\bar{y} = y[\bar{u}, x] \). Then \(\bar{u} \) is globally optimal.

Proof. Consider the function:
\[
\varphi(\tau) = \int_0^\tau e^{-\lambda \tau} \ell(\bar{u}(t), \dot{y}(t)) \, dt + e^{-\lambda \tau} V(\dot{y}(\tau)) - V(x).
\]
We have \(\varphi(0) = 0 \). Using (\star) and Theorem 14, we obtain:
\[
\varphi(\tau) = e^{-\lambda \tau} \left[H(\bar{u}(\tau), y(\tau), \nabla V(y(\tau)) - V(\dot{y}(\tau)) \right] = e^{-\lambda \tau} \left[H(\dot{y}(\tau), \nabla V(y(\tau)) - V(\dot{y}(\tau)) \right]
\]
\[
= 0.
\]
Thus \(\varphi \) is constant, equal to 0. Its limit is given by:
\[
0 = \int_0^\infty e^{-\lambda \tau} \ell(\bar{u}(t), \dot{y}(t)) \, dt - V(x) = W(x, \bar{u}) - V(x),
\]
proving the optimality of \(\bar{u} \).

Corollary 15. Let \(t \geq 0 \), assume that \(\bar{u} \) is continuous in a neighborhood of \(t \) and that \(V \) is \(C^1 \) in a neighborhood of \(y(t) \), where \(\bar{y} := y[\bar{u}, x] \). Then,
\[
\bar{u}(t) \in \text{argmin}_{u \in U} H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))).
\]
5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]
We consider an abstract PDE of the form:
\[F(x, v(x), \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n, \]
where \(F : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \)
is continuous. It contains the HJB equation with
\[F(x, v(x), \nabla v(x)) = \lambda v - \mathcal{H}(x, p). \]
Goal of the section: showing that \(V \) is a viscosity solution to the HJB equation.

[Viscosity solutions]
Definition 17. Let \(v : \mathbb{R}^n \to \mathbb{R} \). The following sets are called sub- and superdifferential, respectively:
\[D^-v(x) = \left\{ p \in \mathbb{R}^n \mid \liminf_{y \to x} \frac{v(y) - v(x) - \langle p, y-x \rangle}{|y-x|} \geq 0 \right\}, \]
\[D^+v(x) = \left\{ p \in \mathbb{R}^n \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y-x \rangle}{|y-x|} \leq 0 \right\}. \]
Exercise. Let \(v(x) = |x| \). Show that \(D^-v(0) = [-1, 1] \).

[Viscosity solutions]
Definition 20. Let \(v : \mathbb{R}^n \to \mathbb{R} \). We call \(v \) a viscosity supersolution if
\[F(x, v(x), p) \geq 0, \quad \forall p \in D^-v(x) \]
or, equivalently, if for all \(\Phi \in C^1(\mathbb{R}^n) \) such that \(v - \Phi \) has a local minimum in \(x \),
\[F(x, v(x), \nabla \Phi(x)) \geq 0. \]
We call \(v \) a viscosity solution if it is a sub- and a supersolution.

[Viscosity solutions]
Theorem 21. The value function \(V \) is a viscosity solution of the HJB equation.
Step 1: \(V \) is a subsolution. Let \(x \in \mathbb{R}^n \), let \(\Phi \in C^1(\mathbb{R}^n) \) be such that \(V - \Phi \) has a local maximizer in \(x \) and \(V(x) = \Phi(x) \).
We have to prove that
\[\lambda v(x) - \mathcal{H}(x, \nabla \Phi(x)) \leq 0. \]
Let \(u_0 \in U \), let \(u \) be the constant control equal to \(u_0 \) and let \(y = y[u, x] \). By the DPP, we have:
\[V(x) \leq \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) \, dt + e^{-\lambda \tau} V(y(\tau)). \]
If \(\tau \) is sufficiently small, we have \(V(y(\tau)) \leq \Phi(y(\tau)) \).

[Viscosity solutions]
This implies that for \(\tau \) sufficiently small,
\[0 \leq \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) \, dt + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x) =: \varphi(\tau). \]
Since \(\varphi(0) = 0 \), we deduce with \((\star) \) that
\[0 \leq \varphi(0) = H(u_0, x, \nabla \Phi(x)) - \lambda V(x). \]
Minimizing with respect to \(u_0 \in U \), we obtain:
\[0 \leq H(x, \nabla \Phi(x)) - \lambda V(x), \]
as was to be proved.

[Viscosity solutions]
Step 2: \(V \) is a supersolution. Let \(x \in \mathbb{R}^n \), let \(\Phi \in C^1(\mathbb{R}^n) \) be such that \(V - \Phi \) has a local minimizer in \(x \) and such that \(V(x) = \Phi(x) \).
We have to prove that
\[\lambda V(x) - \mathcal{H}(x, \nabla \Phi(x)) \leq 0. \]
It follows from the dynamic programming principle that for \(\tau > 0 \) small enough
\[\Phi(x) \geq \inf_{u \in U} \int_0^\tau e^{-\lambda t} \ell(u(t), y[x, u](t)) \, dt + e^{-\lambda \tau} \Phi(y[x, u](\tau)), \]
\[=: \varphi[u](\tau) \]

Abstract PDE
We consider an abstract PDE of the form:
\[F(x, v(x), \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n, \]
where \(F : \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R} \)
is continuous. It contains the HJB equation with
\[F(x, v(x), \nabla v(x)) = \lambda v - \mathcal{H}(x, p). \]
Goal of the section: showing that \(V \) is a viscosity solution to the HJB equation.

Sub- and superdifferentials
Definition 17. Let \(v : \mathbb{R}^n \to \mathbb{R} \). The following sets are called sub- and superdifferential, respectively:
\[D^-v(x) = \left\{ p \in \mathbb{R}^n \mid \liminf_{y \to x} \frac{v(y) - v(x) - \langle p, y-x \rangle}{|y-x|} \geq 0 \right\}, \]
\[D^+v(x) = \left\{ p \in \mathbb{R}^n \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y-x \rangle}{|y-x|} \leq 0 \right\}. \]
Exercise. Let \(v(x) = |x| \). Show that \(D^-v(0) = [-1, 1] \).

Sub- and superdifferentials
Lemma 18. Let \(v : \mathbb{R}^n \to \mathbb{R} \) be continuous. Let \(p \in \mathbb{R}^n \).
\(p \in D^-v(x) \iff \) there exists \(\Phi \in C^1(\mathbb{R}^n) \) such that \(\nabla \Phi(x) = p \) and \(v - \Phi \) has a local minimum in \(x \).
\(p \in D^+v(x) \iff \) there exists \(\Phi \in C^1(\mathbb{R}^n) \) such that \(\nabla \Phi(x) = p \) and \(v - \Phi \) has a local maximum in \(x \).
Proof. The implication \(\iff \) is admitted. The implication \(\iff \) is left as an exercise.

Sub- and superdifferentials
Remark. In the above lemma, one can chose \(\Phi(x) = v(x) \) without loss of generality. Thus, we have:
\((v - \Phi) \) has a local minimum in \(x \iff v - \Phi \) is nonnegative in a neighborhood of \(x \iff v \) is locally bounded from below by \(\Phi \).
\((v - \Phi) \) has a local maximum in \(x \iff v - \Phi \) is nonpositive in a neighborhood of \(x \iff v \) is locally bounded from above by \(\Phi \).
Remark. If \(v \) is Fréchet differentiable at \(x \), then the sub- and superdifferential are equal to \(\{\nabla v(x)\} \).

Viscosity solutions
Definition 19. Let \(v : \mathbb{R}^n \to \mathbb{R} \). We call \(v \) a viscosity subsolution if
\[F(x, v(x), p) \leq 0, \quad \forall x \in \mathbb{R}^n, \quad \forall p \in D^+v(x) \]
or, equivalently, if for all \(\Phi \in C^1(\mathbb{R}^n) \) such that \(v - \Phi \) has a local maximum in \(x \),
\[F(x, v(x), \nabla \Phi(x)) \leq 0. \]
Thus by Lemma 13,

\[
0 \geq \inf_{u \in \mathcal{U}_\infty} \int_0^\tau \ddot{\psi}[u](t) \, dt
\]

\[
= \inf_{u \in \mathcal{U}_\infty} \int_0^\tau e^{-\lambda t} \left(H(u(t), y[u](t), \nabla \Phi(y[u](t))) - \lambda \Phi(y[u](t)) \right) \, dt
\]

\[
\geq \inf_{u \in \mathcal{U}_\infty} \int_0^\tau e^{-\lambda t} \left(H(y[u](t), \nabla \Phi(y[u](t))) - \lambda \Phi(y[u](t)) \right) \, dt.
\]

We have \(\psi[u](0) = H(x, \nabla \Phi(x)) - \lambda V(x) \), in particular, \(\psi[u](0) \) does not depend on \(u \).

Let \(\varepsilon > 0 \). There exists (exercise!) \(\tau > 0 \) such that

\[
|\psi[u](t) - \psi[u](0)| \leq \varepsilon, \quad \forall t \in [0, \tau], \forall u \in \mathcal{U}_\infty.
\]

The previous inequality yields

\[
0 \geq \inf_{u \in \mathcal{U}_\infty} \int_0^\tau (\psi[u](0) - \varepsilon) \, dt
\]

\[
\geq \tau (H(x, \nabla \Phi(x)) - \lambda V(x) - \varepsilon).
\]

Dividing by \(\tau \) and sending \(\varepsilon \) to 0, we get the result.

Theorem 22. (Comparison principle). Let \(v_1 \) be a subsolution to the HJB equation. Let \(v_2 \) be a supersolution to the HJB equation. Then

\[
v_1(x) \leq v_2(x), \quad \forall x \in \mathbb{R}^n.
\]

Proof: admitted.

Corollary 23. The value function \(V \) is the unique viscosity solution.

Proof. By the comparison principle, any viscosity solution \(v \) is such that \(v \leq V \) and \(v \geq V \).