SOD 311 -Time-optimal linear problems

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- *Goal:* controlling a dynamical system so as to reach a target as fast as possible.
- Focus: linear systems $\dot{y}(t) = Ay(t) + Bu(t)$.
- *Issues:* existence of a solution, optimality conditions, graph of feedback κ .

1. EXAMPLE: THE LUNAR LANDING PROBLEM

[Model] A spatial engine has the dynamics:		
$m\ddot{h}(t) = u(t), \forall t \ge 0,$		(1)
where:		
m	mass of the engine	
h(t)	mass of the engine height of the engine at time t	
u(t)	propulsion force at time t	
$v(t) = \dot{h}(t)$	velocity at time t .	

Problem: given h_0 and v_0 , find the smallest T > 0 for which there exist time functions h and u satisfying $(1), (h(0), v(0)) = (h_0, v_0)$, and (h(T), v(T)) = (0, 0).

[Mathematical problem] For simplicity, we take m = 1. We consider constraints on u. Given (h_0, v_0) , the problem writes:

 $\inf_{\substack{T \ge 0 \\ h \colon [0,T] \to \mathbb{R} \\ u \colon [0,T] \to \mathbb{R}}} T, \ \begin{cases} \dot{h}(t) = v(t), \quad h(0) = h_0, \quad h(T) = 0, \\ \dot{v}(t) = u(t), \quad v(0) = v_0, \quad v(T) = 0, \\ u(t) \in [-1,1]. \end{cases}$

Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system). For the moment: no theoretical tool at hand... let's see what we can do!

[Accelerating trajectories] For u = 1, we have $\begin{cases}
v(t) = v_0 + t \\
h(t) = h_0 + tv_0 + \frac{1}{2}t^2.
\end{cases}$ We can isolate t in the first line: $t = v(t) - v_0$ and

We can isolate t in the first line: $t = v(t) - v_0$ and inject the result in the second line:

$$h(t) = h_0 + (v(t) - v_0)v_0 + \frac{1}{2}(v(t) - v_0)^2.$$

The curve

$$\{(h(t), v(t)) \, | \, t \ge 0\}$$

is the portion of a **parabola**.

Fig. 1. Trajectories for u = 1 (acceleration).

[Accelerating trajectories] Let Γ_1 denote the set of initial conditions for which u = 1 steers (h, v) to (0, 0). We have: $(h_0, v_0) \in \Gamma_1 \iff$

$$\begin{cases} \exists T \ge 0\\ 0 = v_0 + T\\ 0 = h_0 + Tv_0 + \frac{1}{2}T^2 \end{cases} \begin{cases} v_0 \le 0\\ 0 = h_0 - v_0^2 + \frac{1}{2}v_0^2. \end{cases}$$

Therefore, $\Gamma_1 = \{(h_0, v_0) \in \mathbb{R}^2 | v_0 \le 0, h_0 = \frac{1}{2}v_0^2. \}. \end{cases}$

[Decelerating trajectories] For u = -1, we have

$$\begin{cases} v(t) = v_0 - t \\ h(t) = h_0 + tv_0 - \frac{1}{2}t^2 \end{cases}$$

We can isolate t in the first line: $t = v_0 - v(t)$ and inject the result in the second line:

$$h(t) = h_0 + (v_0 - v(t))v_0 - \frac{1}{2}(v_0 - v(t))^2.$$

The curve $\{(h(t), v(t)) | t \ge 0\}$ is the portion of a **parabola**.

[Decelerating trajectories]

[**Decelerating trajectories**] Let Γ_{-1} denote the set of initial conditions for which u = -1 steers (h, v) to (0, 0). We have: $(h_0, v_0) \in \Gamma_{-1} \iff$

$$\begin{cases} \exists T \ge 0\\ 0 = v_0 - T\\ 0 = h_0 + Tv_0 - \frac{1}{2}T^2 \end{cases} \longleftrightarrow \begin{cases} v_0 \ge 0\\ 0 = h_0 + v_0^2 - \frac{1}{2}v_0^2. \end{cases}$$

Therefore,

 $\Gamma_{-1} = \left\{ (h_0, v_0) \in \mathbb{R}^2 \mid \begin{array}{c} v_0 \ge 0 \\ h_0 = -\frac{1}{2}v_0^2 \end{array} \right\}.$

[A simple case] Consider the case $v_0 = 0$. Then we should (fully) accelerate and (fully) decelerate on equal intervals of time.

- If $h_0 < 0$: accelerate (u = 1) until $h(t) = h_0/2$, then decelerate (u = -1).
- If $h_0 > 0$: decelerate (u = -1) until $h(t) = h_0/2$, then accelerate (u = 1).

Fig. 3. Optimal control and trajectory for $v_0 = 0$ and $h_0 < 0$.

[General case] First case: (h_0, v_0) lies strictly under $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "decelerateaccelerate".

[General case] Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. One possibility for the scenario "decelerate-

accelerate".

[General case] Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "accelerate-decelerate".

[General case] *Conclusion:* Whatever the initial condition, there is exactly one Pontryagin trajectory, which is necessarily optimal.

[General case] We finally obtain a relation in feedback form for optimal controls \bar{u} with associated trajectory (\bar{h}, \bar{v}) :

$$\bar{u}(t) = \kappa(h(t), \bar{v}(t)),$$
where κ is defined by:

$$\kappa(h, v) = \begin{cases}
1 & \text{if } (h, v) \in \Gamma_1 \\
-1 & \text{if } (h, v) \in \Gamma_{-1} \\
1 & \text{if } (h, v) \text{ lies strictly under } \Gamma_{-1} \cup \Gamma_1 \\
-1 & \text{if } (h, v) \text{ lies strictly above } \Gamma_{-1} \cup \Gamma_1,
\end{cases}$$
for any $(h, v) \in \mathbb{R}^2 \setminus \{0\}.$
Remark: The feedback relation holds whatever the

Remark: The feedback relation holds whatever the initial condition of the problem.

[Summary] The three main steps of our methodology:

- Calculation of **trajectories with constant controls** (with extremal values).
- Theory \rightarrow structural properties of optimal controls.
- Reformulation of the problem as a **geometric** problem.

2. EXISTENCE OF A SOLUTION

[Framework] A general linear time-optimal control problem:

$$\inf_{\substack{T \ge 0\\ y \in W^{1,\infty}(0,T;\mathbb{R}^n)\\ u \in L^{\infty}(0,T;\mathbb{R}^m)}} T, \quad \text{s.t.:} \begin{cases} \dot{y}(t) = Ay(t) + Bu(t), \\ y(0) = y_0, \\ y(T) \in C, \\ u(t) \in U. \end{cases}$$

$$(P)$$

Data of the problem and assumptions:

• Initial condition: $y_0 \in \mathbb{R}^n$

- Dynamics' coefficients: $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$
- A control set: $U \subset \mathbb{R}^m$, assumed convex, compact, non-empty
- A target: $C \subset \mathbb{R}^n$, assumed convex, closed, nonempty.

[Matrix exponential]

Definition 1. Let $M \in \mathbb{R}^{n \times n}$. We call **matrix exponential** e^M the matrix

$$e^M = \sum_{k=0}^{\infty} \frac{1}{k!} M^k \in \mathbb{R}^{n \times n}$$

Lemma 2. • For any operator norm $\|\cdot\|$, we have $||e^M|| \le e^{||M||}.$

- For all $t \in \mathbb{R}$, we have $\frac{d}{dt}e^{tM} = Me^{tM} = e^{tM}M$. Given $x_0 \in \mathbb{R}^n$, let $x \colon [0,\infty) \to \mathbb{R}^n$ be the solution to

 $\dot{x}(t) = Mx(t), \quad x(0) = x_0.$ Then $x(t) = e^{tM} x_0$, for all $t \ge 0$.

[State equation] A pair $(y, u) \in W^{1,\infty}(0,T;\mathbb{R}^n) \times$ $L^{\infty}(0,T;\mathbb{R}^m)$ satisfies the state equation: $\dot{y}(t) = Ay(t) + Bu(t), y(0) = y_0$ if and only if

$$y(t) = y_0 + \int_0^t \left(Ay(s) + Bu(s) \right) \mathrm{d}s, \quad \forall t \in [0, T].$$
(2)

Theorem 3. (Picard-Lindelöf / FR: Cauchy-Lipschitz). Given $y_0 \in \mathbb{R}^n$ and $u \in L^{\infty}(0,T;\mathbb{R}^m)$, there exists a unique y satisfying (2). Moreover,

$$y(t) = e^{tA}y_0 + \int_0^t e^{(t-s)A}Bu(s)ds.$$
 [Duhamel]

Notation: y[u].

[Reachable set] Some notation:

- $L^{\infty}(0,T;U)$: set of measurable functions from (0,T) to U,
- \overline{T} : the value of problem (P) ($\overline{T} = \infty$ if (P) is infeasible).

Definition 4. Given $t \ge 0$, the **reachable set** at time $t, \mathcal{R}(t)$, is defined by

 $\mathcal{R}(t) = \left\{ y[u](t) \, | \, u \in L^{\infty}(0,t;U) \right\}.$

Lemma 5. • For all $T \ge 0$, the set $\bigcup_{0 \le t \le T} \mathcal{R}(t)$ is bounded.

• For all $t \ge 0$, the reachable set $\mathcal{R}(t)$ is **convex**. Proof. Exercise (use Duhamel's formula and boundedness of U).

[Weak compactness]

Definition 6. Let F be a Banach space. Let $(e_k)_{k \in \mathbb{N}}$ be a sequence in F. The sequence **converges weakly** to $\bar{e} \in F$ (notation: $e_k \rightarrow \bar{e}$) if

 $L(e_k) \to L(\bar{e}),$

for all continuous and linear map $L: F \to \mathbb{R}$.

Remark. If $e_k \rightarrow \bar{e}$, then $L(e_k) \rightarrow L(\bar{e})$ for any continuous and linear map $L: F \rightarrow \mathbb{R}^k$.

Lemma 7. Let E be a closed and convex subset of a Hilbert space F. Let $(e_k)_{k\in\mathbb{N}}$ be a bounded sequence in E. Then there exists a weakly convergent subsequence $(e_{k_q})_{q \in \mathbb{N}}$ with weak limit in E.

Proof. See Corollary 3.22 and Proposition 5.1 in Functional Analysis, by H. Brézis.

[Closedness of the reachable set]

Lemma 8. (Closedness lemma). Let $(\tau_k)_{k\in\mathbb{N}}$ be a convergent sequence of positive real numbers with limit $\bar{\tau} \geq 0$. Assume that $\tau_k \geq \bar{\tau}, \forall k \in \mathbb{N}$. Let $(y_k)_{k\in\mathbb{N}}$ be a convergent sequence in \mathbb{R}^n with limit \bar{y} . Assume that

$$y_k \in \mathcal{R}(\tau_k), \quad \forall k \in \mathbb{N}.$$

Corollary 9. For all $t \geq 0$, the set $\mathcal{R}(t)$ is closed.

[Proof of the closedness lemma]

Then $\bar{y} \in \mathcal{R}(\bar{\tau})$.

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_k \in L^{\infty}(0, \tau_k; U)$ be such that $y[u_k](\tau_k) = y_k$. As a consequence of Lemma 5, there exists M > 0 (independent of k) such that $\|\dot{y}[u_k]\|_{L^{\infty}(0,\tau_k;\mathbb{R}^m)} \le M.$ Thus $y[u_k](\cdot)$ is *M*-Lipschitz, that is $\|y[u_k](t_2) - y[u_k](t_1)\| \le M |t_2 - t_1|, \quad \forall t_1, t_2 \in [0, T].$ Next, we have $\|y[u_k](\bar{\tau}) - \bar{y}\| \leq$ $\underbrace{\|y[u_k](\bar{\tau}) - y[u_k](\tau_k)\|}_{\leq M|\tau_k - \bar{\tau}|} + \|\underbrace{y[u_k](\tau_k)}_{y_k} - \bar{y}\| \to 0.$ Thus $y[u_k](\bar{\tau}) \to \bar{y}$.

[Proof of the closedness lemma]

Step 2. Consider the linear map L: uF $L^2(0, \bar{\tau}; \mathbb{R}^m) \to \mathbb{R}^n$ defined by

$$L(u) = \int_0^{\bar{\tau}} e^{(\bar{\tau} - s)A} Bu(s) \,\mathrm{d}s.$$

By Cauchy-Schwarz inequality, we have

$$L(u)| \leq \int_{0}^{\tau} e^{(\bar{\tau}-s)\|A\|} \cdot \|B\| \cdot \|u(s)\| \, \mathrm{d}s$$

$$\leq \underbrace{\|B\| \cdot \left(\int_{0}^{\bar{\tau}} e^{2(\bar{\tau}-s))\|A\|} \, \mathrm{d}s\right)^{1/2}}_{<\infty} \|u\|_{L^{2}(0,\bar{\tau};\mathbb{R}^{m})}.$$

This proves that the linear form L is **continuous**.

[Proof of the closedness lemma]

Step 3. Apply Lemma 7:

• $L^2(0, \bar{\tau}; \mathbb{R}^m)$ is a Hilbert space

• $L^{\infty}(0, \bar{\tau}; U)$ is convex, closed, and bounded. Then the sequence u_k (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit \bar{u} . We have:

$$\underbrace{y[u_{k_q}](\bar{\tau})}_{\longrightarrow \bar{y}} = e^{\bar{\tau}A}y_0 + \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A} Bu_{k_q}(s) ds$$
$$= e^{\bar{\tau}A}y_0 + L(u_{k_q}) \longrightarrow e^{\bar{\tau}A}y_0 + L(\bar{u}) = y[\bar{u}](\bar{\tau}),$$
proving that $\bar{y} = y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau}).$

[Existence result]

Theorem 10. Assume that $\overline{T} < \infty$. There exists an optimal control, that is, there exists \bar{u} such that

$y[\bar{u}](\bar{T}) \in C.$

Proof. Consider the set of times at which the target can be reached, that is:

 $\mathcal{T} = \{ T \ge 0 \, | \, \mathcal{R}(T) \cap C \neq \emptyset \}.$

By assumption \mathcal{T} is non empty. By definition, $\overline{T} = inf \mathcal{T}.$ Our task: proving that $\overline{T} \in \mathcal{T}$.

[Existence result]

- It suffices to show that $\mathcal{R}(\overline{T}) \cap C \neq \emptyset$.
- Let $\tau_k \downarrow \overline{T}$ be such that for all $k \in \mathbb{N}$, there exists $y_k \in \mathcal{R}(\tau_k) \cap C$. By Lemma 5, $(y_k)_{k \in \mathbb{N}}$ is bounded. Thus it has an accumulation point
- Since C is closed, $\bar{y} \in C$. By Lemma 8, $\bar{y} \in \mathcal{R}(\bar{T})$.

3. OPTIMALITY CONDITIONS

[Methodology] For proving the optimality conditions (in the form of a Pontryagin's principle), we proceed as follows:

- Fix an optimal control \bar{u} for the time-optimal problem.
- Show that \bar{u} is optimal for another problem, easier to treat, referred to as auxiliary problem.
- Establish Pontryagin's principle for the auxiliary problem.

3.1 Separation

[Hahn-Banach lemma]

Lemma 11. Let C_1 and C_2 be two closed and convex sets of \mathbb{R}^n , let C_2 be bounded. Assume that $C_1 \cap$ $C_2 = \emptyset$. Then, there exists $q \in \mathbb{R}^n \setminus \{0\}$ such that

$$\langle q, y_1 \rangle \leq \langle q, y_2 \rangle, \quad \forall y_1 \in C_1, \ \forall y_2 \in C_2$$

We say that q separates C_1 and C_2 .

Proof. See Brezis, Theorem 1.7.

Remark. With loss of generality, we can assume that ||q|| = 1.

Fig. 7. Illustration of Hahn-Banach lemma.

[Normal cones]

Definition 12. Let K be a subset of \mathbb{R}^n and let $x \in K$. The normal cone of K at x, denoted $N_K(x)$ is defined by

$$N_K(x) = \left\{ q \in \mathbb{R}^n \, | \, \langle q, y - x \rangle \le 0, \, \forall y \in K \right\}.$$

Some examples.

- If $K = \{\bar{x}\}$, then $N_K(\bar{x}) = \mathbb{R}^n$.
- If $K = \{x\}$, then $N_K(x) = \{0\}$ for any $x \in \mathbb{R}^n$. Let $\mathbb{R}_{\geq 0}^n := \{x \in \mathbb{R}^n \mid x_i \geq 0, i = 1, ..., n\}$. Let $\mathbb{R}_{\leq 0}^n := \{x \in \mathbb{R}^n \mid x_i \leq 0, i = 1, ..., n\}$. Then

$$N_{\mathbb{R}^{n}_{\geq 0}}(0) = \mathbb{R}^{n}_{\leq 0}$$
 and $N_{\mathbb{R}^{n}_{\leq 0}}(0) = \mathbb{R}^{n}_{\geq 0}$

[Normal cones]

Fig. 8. A vector in the normal cone.

[A separation result]

Lemma 13. (Separation lemma). Let \overline{T} denote the value of the time optimal control problem (P). Assume that $0 < \overline{T} < \infty$. Then, there exists $\overline{q} \in \mathbb{R}^n \setminus \{0\}$ such that

 $\langle \bar{q},z\rangle \leq \langle \bar{q},y\rangle, \quad \forall z\in C, \quad \forall y\in \mathcal{R}(\bar{T}).$

Corollary 14. For any optimal control \bar{u} , we have $\bar{q} \in N_C(y[\bar{u}](\bar{T})).$

Proof of the corollary. Take $y = y[\bar{u}](\bar{T})$ in the separation lemma.

[A separation result] Proof of the separation lemma.

- Let $T_k \uparrow \overline{T}$. For all $k \in \mathbb{N}$, $\mathcal{R}(T_k) \cap C = \emptyset$.
- The set C is convex and closed, $\mathcal{R}(T_k)$ is compact and convex (by Lemma 5 and Lemma 8).
- By the Hahn-Banach Lemma, there exists q_k such that $||q_k|| = 1$ and

$$\langle q_k, z \rangle \leq \langle q_k, y \rangle, \quad \forall z \in C, \ \forall y \in \mathcal{R}(T_k).$$
 (3)

Extracting a subsequence if necessary, we assume that $q_k \to \bar{q}$ for some $\bar{q} \in \mathbb{R}^n$ with $\|\bar{q}\| = 1$.

[A separation result] We next show that \bar{q} separates C and $\mathcal{R}(\bar{T})$.

- Let $z \in C$ and let $y \in \mathcal{R}(\overline{T})$. Let $u \in L^{\infty}(0,T;U)$ be such that $y[u](\overline{T}) = y$. Set $y_k = y[u](T_k) \in \mathcal{R}(T_k)$.
- Inequality (3) yields: $\langle q_k, z \rangle \leq \langle q_k, y_k \rangle, \quad \forall k \in \mathbb{N}.$
- We pass to the limit and obtain $\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle.$

3.2 An auxiliary problem

[An auxiliary problem] Let T > 0, let $y_0 \in \mathbb{R}^n$, and let $q \in \mathbb{R}^n$ be fixed. Consider the following **auxiliary** optimal control problem:

 $\inf_{\substack{y \in W^{1,\infty}(0,T;\mathbb{R}^n)\\ u \in L^{\infty}(0,T;U)}} \langle q, y(T) \rangle, \quad \text{s.t.:} \begin{cases} \dot{y}(t) = Ay(t) + Bu(t)\\ y(0) = y_0, \\ u(t) \in U. \end{cases}$ $(P_{\text{aux}}[q,T])$

Remark: Let $(\bar{u}, \bar{y}, \bar{T})$ be a solution to the timeoptimal problem. Let \bar{q} be as in the separation lemma. Then (\bar{u}, \bar{y}) is a solution to $P_{\text{aux}}[q, T]$, with $(q, T) = (\bar{q}, \bar{T})$.

[**Pre-Hamiltonian and adjoint equation**] Define the **pre-Hamiltonian**:

 $H\colon (u,y,p)\in \mathbb{R}^m\times \mathbb{R}^n\times \mathbb{R}^n\mapsto \langle p,Ay+Bu\rangle\in \mathbb{R}.$ Note that

$$H(u, y, p) = \langle A^{\top} p, y \rangle + \langle B^{\top} p, u \rangle.$$

Thus,

 $\nabla_y H(u, y, p) = A^{\top} p$ and $\nabla_u H(u, y, p) = B^{\top} p$. Let us define p as the solution to the **adjoint equa**tion (also called costate equation):

$$\begin{cases} p(T) = q \\ -\dot{p}(t) = A^{\top} p(t) = \nabla_y H(p(t)). \end{cases}$$
(4)

[Pontryagin's principle]

Theorem 15. (Pontryagin's minimum principle). Let (\bar{y}, \bar{u}) be such that $\bar{y} = y[\bar{u}]$. Then (\bar{y}, \bar{u}) is a solution to $(P_{\text{aux}}[q, T])$ if and only if $\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t)), \text{ for a.e. } t \in (0, T).$ Remark:

 $\underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t)) = \underset{v \in U}{\operatorname{argmin}} \langle B^{\top} p(t), v \rangle.$

[**Proof of Pontryagin's principle**] " \Leftarrow " Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\begin{split} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle \\ &= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle -p(t), Ay(t) - A\bar{y}(t) \rangle \, \mathrm{d}t \\ &+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\bar{y}(t) - B\bar{u}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle B^\top p(t), u(t) - \bar{u}(t) \rangle \, \mathrm{d}t \ge 0. \end{split}$$

[**Proof of Pontryagin's principle**] " \Longrightarrow " Assume that (\bar{y}, \bar{u}) is optimal. Consider the time function

 $h: t \in [0,T] \mapsto \langle B^{\top} p(t), \bar{u}(t) \rangle \in \mathbb{R}.$

A time t is called Lebesgue point if

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) \mathrm{d}s.$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue function, since $h \in L^1(0,T)$.

Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

$$u_{\varepsilon}(s) = \begin{cases} v & \text{if } s \in (t - \varepsilon, t + \varepsilon) \\ \bar{u}(s) & \text{otherwise.} \end{cases}$$

[Proof of Pontryagin's principle] The same calculation as above leads to:

$$0 \leq \frac{1}{2\varepsilon} \langle q, y[u_{\varepsilon}](T) - \bar{y}(T) \rangle$$

= $\frac{1}{2\varepsilon} \int_{0}^{T} \langle B^{\top} p(s), u_{\varepsilon}(t) - \bar{u}(s) \rangle ds$
= $\frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} \langle B^{\top} p(s), v - \bar{u}(s) ds$
 $\xrightarrow[\varepsilon \downarrow 0]{} \langle B^{\top} p(t), v - \bar{u}(t) \rangle,$

as was to be proved.

[Pontryagin for time-optimal problems] We come back to the time-optimal control problem (P).

Theorem 16. (Pontryagin's principle). Let $y_0 \notin C$, assume that $\overline{T} < \infty$. Let $(\overline{y}, \overline{u})$ be a solution to the original minimum time problem (P).

Then, there exists $\bar{q} \in N_C(\bar{y}(\bar{T})), \ \bar{q} \neq 0$ such that

$$\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t)) = \underset{v \in U}{\operatorname{argmin}} \langle B^{\top} p, v \rangle,$$
(5)

where p is the solution to the costate equation: $(1) = A^{T} (p) = \bar{A}^{T} (p)$

$$-\dot{p}(t) = A \cdot p(t), \quad p(T) = \bar{q}.$$

Remark. Pontryagin's principle is only a necessary optimality condition.

[Proof]

• By Lemma 13 and by Corollary 14, there exists $\bar{q} \in N_C(\bar{y}(\bar{T}))$ such that

 $\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}).$ We take $z = \bar{y}(\bar{T}) \in C.$

- It follows that (\bar{y}, \bar{u}) is a solution to the auxiliary problem $(P_{\text{aux}}[q, T])$, with $q = \bar{q}$ and $T = \bar{T}$.
- Applying Pontryagin's principle to the auxiliary problem (Theorem 15), we obtain (5).

4. BACK TO THE LUNAR LANDING PROBLEM

[Lunar landing problem] Recall the problem: $\inf_{\substack{T \ge 0 \\ h: [0,T] \to \mathbb{R} \\ u: [0,T] \to \mathbb{R} \\ u: [0,T] \to \mathbb{R}}} T, \begin{cases} \dot{h}(t) = v(t), & h(0) = h_0, h(T) = 0 \\ \dot{v}(t) = u(t), & v(0) = v_0, v(T) = 0 \\ u(t) \in [-1,1]. \\ u(t) \in [-1,1]. \end{cases}$ The dynamics writes: $\begin{pmatrix} \dot{h}(t) \\ u(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} h(t) \\ h(t) \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$

$$\begin{pmatrix} h(t) \\ \dot{v}(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} h(t) \\ v(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u(t).$$

The lunar landing problem is a special case of (P), with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \{0\}$$

[Lunar landing problem] We apply Pontryagin's principle. Let T be the optimal time.

• Costate equation (4) reads:

$$-\begin{pmatrix} \dot{p}_h(t)\\ \dot{p}_v(t) \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_h(t)\\ p_v(t) \end{pmatrix} = \begin{pmatrix} 0\\ p_h(t) \end{pmatrix}.$$

• Terminal condition: $(p_h(T), p_v(T)) \in N_C(\bar{h}(T), \bar{v}(T)) = \mathbb{R}^2$ does not bring any information!

• Analytic resolution:

$$p_h(t) = p_h(T), \quad \dot{p}_v(t) = -p_h(t) = -p_h(T)$$
 and thus

$$p_v(t) = p_v(T) + p_h(T)(T-t).$$

[Lunar landing problem]

• The minimization condition reads:

 $\bar{u}(t) \in \underset{v \in [-1,1]}{\operatorname{argmin}} \begin{pmatrix} 0\\1 \end{pmatrix}^{\top} \begin{pmatrix} p_h(t)\\p_v(t) \end{pmatrix} v = \underset{v \in [-1,1]}{\operatorname{argmin}} p_v(t)v.$ It follows that $\begin{cases} \bar{u}(t) = -1 & \text{if } p_v(t) > 0\\ \bar{u}(t) = 1 & \text{if } p_v(t) < 0 \end{cases} \text{ for a.e. } t \in [0,T].$

[Lunar landing problem]

We now prove the original conjecture: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1, 1\}$.

- Case 1: $p_h(T) = 0$. Then $p_v(T) \neq 0$. Therefore • either $p_v(t) = p_v(T) < 0 \Longrightarrow \bar{u}(t) = 1$ • or $p_v(t) = p_v(T) > 0 \Longrightarrow \bar{u}(t) = -1$.
- Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1.
 - If $\tau \in (0, T)$, then there is a switch.

[A summary] Given a linear time-optimal control problem, the following methodology can be followed to analyze it:

- (1) Put the state equation in the form $\dot{y} = Ay + Bu$. Check the **assumptions** state at the beginning of Section 2.
- (2) **Existence** of a solution: verify the applicability of Theorem 10.
- (3) Derive optimality conditions with Theorem 15.
- (4) Deduce **structural properties** of optimal controls and trajectories.
- (5) Transform the problem into a **geometric** problem.
- (6) Solve it!