
SOD 311 — Time-optimal linear problems
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[Objectives]
• Goal: controlling a dynamical system so as to

reach a target as fast as possible.
• Focus: linear systems ẏ(t) = Ay(t) +Bu(t).
• Issues: existence of a solution, optimality condi-

tions, graph of feedback κ.

1. EXAMPLE: THE LUNAR LANDING PROBLEM

[Model] A spatial engine has the dynamics:

mḧ(t) = u(t), ∀t ≥ 0, (1)

where:
m mass of the engine
h(t) heigth of the engine at time t
u(t) propulsion force at time t

v(t) = ḣ(t) velocity at time t.

Problem: given h0 and v0, find the smallest T > 0 for
which there exist time functions h and u satisfying
(1), (h(0), v(0)) = (h0, v0), and (h(T ), v(T )) = (0, 0).

[Mathematical problem] For simplicity, we take
m = 1. We consider constraints on u.
Given (h0, v0), the problem writes:

inf
T≥0

h : [0,T ]→R
v : [0,T ]→R
u : [0,T ]→R

T,


ḣ(t) = v(t), h(0) = h0, h(T ) = 0,

v̇(t) = u(t), v(0) = v0, v(T ) = 0,

u(t) ∈ [−1, 1].

Remark. The state (h, v) is uniquely defined by the
control u (via the dynamical system).
For the moment: no theoretical tool at hand... let’s
see what we can do!

[Accelerating trajectories] For u = 1, we have{
v(t) =v0 + t

h(t) =h0 + tv0 +
1

2
t2.

We can isolate t in the first line: t = v(t)− v0 and
inject the result in the second line:

h(t) = h0 + (v(t)− v0)v0 +
1

2
(v(t)− v0)2.

The curve
{(h(t), v(t)) | t ≥ 0}

is the portion of a parabola.

[Accelerating trajectories]

Fig. 1. Trajectories for u = 1 (acceleration).

[Accelerating trajectories] Let Γ1 denote the set
of initial conditions for which u = 1 steers (h, v) to
(0, 0). We have: (h0, v0) ∈ Γ1 ⇐⇒
∃T ≥ 0

0 = v0 + T

0 = h0 + Tv0 +
1

2
T 2

⇐⇒

{
v0 ≤ 0

0 = h0 − v2
0 +

1

2
v2

0 .

Therefore, Γ1 =
{

(h0, v0) ∈ R2| v0 ≤ 0, h0 = 1
2v

2
0 .
}
.

[Decelerating trajectories] For u = −1, we have{
v(t) =v0 − t

h(t) =h0 + tv0 −
1

2
t2.

We can isolate t in the first line: t = v0 − v(t) and
inject the result in the second line:

h(t) = h0 + (v0 − v(t))v0 −
1

2
(v0 − v(t))2.

The curve {(h(t), v(t)) | t ≥ 0} is the portion of a
parabola.

[Decelerating trajectories]

Fig. 2. Trajectories for u = −1 (deceleration).



[Decelerating trajectories] Let Γ−1 denote the set
of initial conditions for which u = −1 steers (h, v) to
(0, 0). We have: (h0, v0) ∈ Γ−1 ⇐⇒
∃T ≥ 0

0 = v0 − T

0 = h0 + Tv0 −
1

2
T 2

⇐⇒

{
v0 ≥ 0

0 = h0 + v2
0 −

1

2
v2

0 .

Therefore,

Γ−1 =

{
(h0, v0) ∈ R2

∣∣∣∣∣ v0 ≥0

h0 =−1

2
v2

0

}
.

[A simple case] Consider the case v0 = 0.
Then we should (fully) accelerate and (fully) deceler-
ate on equal intervals of time.
• If h0 < 0: accelerate (u = 1) until h(t) = h0/2,

then decelerate (u = −1).
• If h0 > 0: decelerate (u = −1) until h(t) = h0/2,

then accelerate (u = 1).

[A simple case]

Fig. 3. Optimal control and trajectory for v0 = 0 and
h0 < 0.

[A simple case]

Fig. 4. Optimal control and trajectory for v0 = 0 and
h0 > 0.

[A simple case]

Fig. 5. Some optimal trajectories with null initial
speed.

[General case] The theory (developed in the next
sections) tells us the following.
For any (h0, v0) ∈ R2,
• There exists an optimal time T̄ and an optimal

control ū.
• Any optimal control takes values in {−1, 1}.
• Any optimal control is piecewise constant,

with atmost two pieces.

[General case] In other words, for any optimal
control ū, one of the following cases is satisfied:
(1) ū(t) = 1, for almost every t ∈ (0, T̄ )
(2) ū(t) = −1, for a.e. t ∈ (0, T̄ )
(3) “Accelerate-Decelerate”: ∃τ ∈ (0, T̄ ) such that:

ū(t) = 1, for a.e. t ∈ (0, τ), ū(t) = −1, for a.e.
t ∈ (τ, T̄ ).

(4) “Decelerate-Accelerate”: ∃τ ∈ (0, T̄ ) such that:
ū(t) = −1, for a.e. t ∈ (0, τ), ū(t) = 1, for a.e.
t ∈ (τ, T̄ ).

In the last two cases, τ is called switching time.
Remark for French readers: we use the english notation (a, b)
for the open interval, instead of the french notation ]a, b[.

[General case] The problem is reduced to a geo-
metric problem.
Find all trajectories such that...
• starting at the initial condition,
• ending up at the origin,
• made of two portions of parabola (a “red” and a

“blue” one).
We will call them Pontryagin trajectories.
Methodology: for each initial condition,
• find all possible Pontryagin trajectories,
• find out the optimal one (there may exist Pon-

tryagin trajectories which are not optimal).
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[General case] First case: (h0, v0) lies strictly
under Γ1 ∪ Γ−1.
One possibility for the scenario “accelerate-
decelerate”.

[General case] First case: (h0, v0) lies strictly
under Γ1 ∪ Γ−1.
Zero possibility for the scenario “decelerate-
accelerate”.

[General case] Second case: (h0, v0) lies strictly
above Γ1 ∪ Γ−1.
One possibility for the scenario “decelerate-
accelerate”.

[General case] Second case: (h0, v0) lies strictly
above Γ1 ∪ Γ−1. Zero possibility for the scenario
“accelerate-decelerate”.

[General case] Conclusion: Whatever the initial
condition, there is exactly one Pontryagin trajectory,
which is necessarily optimal.

Fig. 6. Phase portrait of optimal trajectories.

[General case] We finally obtain a relation in feed-
back form for optimal controls ū with associated
trajectory (h̄, v̄):

ū(t) = κ(h̄(t), v̄(t)),

where κ is defined by:

κ(h, v) =


1 if (h, v) ∈ Γ1

−1 if (h, v) ∈ Γ−1

1 if (h, v) lies strictly under Γ−1 ∪ Γ1

−1 if (h, v) lies strictly above Γ−1 ∪ Γ1,

for any (h, v) ∈ R2\{0}.
Remark: The feedback relation holds whatever the
initial condition of the problem.

[Summary] The three main steps of our methodol-
ogy:
• Calculation of trajectories with constant

controls (with extremal values).
• Theory → structural properties of optimal

controls.
• Reformulation of the problem as a geometric

problem.

2. EXISTENCE OF A SOLUTION

[Framework] A general linear time-optimal control
problem:

inf
T≥0

y∈W 1,∞(0,T ;Rn)
u∈L∞(0,T ;Rm)

T, s.t.:


ẏ(t) =Ay(t) +Bu(t),

y(0) =y0,

y(T ) ∈C,
u(t) ∈U.

(P )
Data of the problem and assumptions:
• Initial condition: y0 ∈ Rn
• Dynamics’ coefficients: A ∈ Rn×n and B ∈
Rn×m

• A control set: U ⊂ Rm, assumed convex, com-
pact, non-empty

• A target: C ⊂ Rn, assumed convex, closed, non-
empty.
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[Matrix exponential]

Definition 1. Let M ∈ Rn×n. We call matrix expo-
nential eM the matrix

eM =

∞∑
k=0

1

k!
Mk ∈ Rn×n.

Lemma 2. • For any operator norm ‖ · ‖, we have
‖eM‖ ≤ e‖M‖.

• For all t ∈ R, we have d
dte

tM = MetM = etMM .
• Given x0 ∈ Rn, let x : [0,∞) → Rn be the

solution to

ẋ(t) = Mx(t), x(0) = x0.

Then x(t) = etMx0, for all t ≥ 0.

[State equation] A pair (y, u) ∈ W 1,∞(0, T ;Rn) ×
L∞(0, T ;Rm) satisfies the state equation:
ẏ(t) = Ay(t) +Bu(t), y(0) = y0 if and only if

y(t) = y0 +

∫ t

0

(
Ay(s) +Bu(s)

)
ds, ∀t ∈ [0, T ].

(2)

Theorem 3. (Picard-Lindelöf / FR: Cauchy-Lipschitz).
Given y0 ∈ Rn and u ∈ L∞(0, T ;Rm), there exists a
unique y satisfying (2). Moreover,

y(t) = etAy0 +

∫ t

0

e(t−s)ABu(s)ds. [Duhamel]

Notation: y[u].

[Reachable set] Some notation:
• L∞(0, T ;U): set of measurable functions from

(0, T ) to U ,
• T̄ : the value of problem (P ) (T̄ = ∞ if (P ) is

infeasible).

Definition 4. Given t ≥ 0, the reachable set at time
t, R(t), is defined by

R(t) =
{
y[u](t) |u ∈ L∞(0, t;U)

}
.

Lemma 5. • For all T ≥ 0, the set ∪0≤t≤TR(t) is
bounded.
• For all t ≥ 0, the reachable set R(t) is convex.

Proof. Exercise (use Duhamel’s formula and bound-
edness of U).

[Weak compactness]

Definition 6. Let F be a Banach space. Let (ek)k∈N
be a sequence in F . The sequence converges weakly
to ē ∈ F (notation: ek ⇀ ē) if

L(ek)→ L(ē),

for all continuous and linear map L : F → R.

Remark. If ek ⇀ ē, then L(ek) → L(ē) for any
continuous and linear map L : F → Rk.

Lemma 7. Let E be a closed and convex subset
of a Hilbert space F . Let (ek)k∈N be a bounded
sequence in E. Then there exists a weakly convergent
subsequence (ekq )q∈N with weak limit in E.

Proof. See Corollary 3.22 and Proposition 5.1 in
Functional Analysis, by H. Brézis.

[Closedness of the reachable set]

Lemma 8. (Closedness lemma). Let (τk)k∈N be a
convergent sequence of positive real numbers with
limit τ̄ ≥ 0. Assume that τk ≥ τ̄ , ∀k ∈ N.
Let (yk)k∈N be a convergent sequence in Rn with limit
ȳ. Assume that

yk ∈ R(τk), ∀k ∈ N.
Then ȳ ∈ R(τ̄).

Corollary 9. For all t ≥ 0, the set R(t) is closed.

[Proof of the closedness lemma]
Proof. Step 1. For all k ∈ N, let uk ∈ L∞(0, τk;U) be
such that y[uk](τk) = yk. As a consequence of Lemma
5, there exists M > 0 (independent of k) such that

‖ẏ[uk]‖L∞(0,τk;Rm) ≤M.

Thus y[uk](·) is M -Lipschitz, that is

‖y[uk](t2)−y[uk](t1)‖ ≤M |t2− t1|, ∀t1, t2 ∈ [0, T ].

Next, we have ‖y[uk](τ̄)− ȳ‖ ≤
‖y[uk](τ̄)− y[uk](τk)‖︸ ︷︷ ︸

≤M |τk−τ̄ |

+‖ y[uk](τk)︸ ︷︷ ︸
yk

−ȳ‖ → 0.

Thus y[uk](τ̄)→ ȳ.

[Proof of the closedness lemma]
Step 2. Consider the linear map L : u ∈
L2(0, τ̄ ;Rm)→ Rn defined by

L(u) =

∫ τ̄

0

e(τ̄−s)ABu(s) ds.

By Cauchy-Schwarz inequality, we have

|L(u)| ≤
∫ τ̄

0

e(τ̄−s)‖A‖ · ‖B‖ · ‖u(s)‖ ds

≤ ‖B‖ ·
(∫ τ̄

0

e2(τ̄−s))‖A‖ ds
)1/2

︸ ︷︷ ︸
<∞

‖u‖L2(0,τ̄ ;Rm).

This proves that the linear form L is continuous.

[Proof of the closedness lemma]
Step 3. Apply Lemma 7:
• L2(0, τ̄ ;Rm) is a Hilbert space
• L∞(0, τ̄ ;U) is convex, closed, and bounded.

Then the sequence uk (restricted to (0, τ̄)) has a
weakly convergent subsequence, with limit ū.
We have:

y[ukq ](τ̄)︸ ︷︷ ︸
−→ȳ

= eτ̄Ay0 +

∫ τ̄

0

e(τ̄−s)ABukq (s)ds

= eτ̄Ay0 + L(ukq ) −→ eτ̄Ay0 + L(ū) = y[ū](τ̄),

proving that ȳ = y[ū](τ̄) ∈ R(τ̄).
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[Existence result]

Theorem 10. Assume that T̄ < ∞. There exists an
optimal control, that is, there exists ū such that

y[ū](T̄ ) ∈ C.
Proof. Consider the set of times at which the target
can be reached, that is:

T =
{
T ≥ 0 |R(T ) ∩ C 6= ∅

}
.

By assumption T is non empty. By definition,
T̄ = inf T .
Our task: proving that T̄ ∈ T .

[Existence result]
• It suffices to show that R(T̄ ) ∩ C 6= ∅.
• Let τk ↓ T̄ be such that for all k ∈ N, there

exists yk ∈ R(τk) ∩ C. By Lemma 5, (yk)k∈N is
bounded. Thus it has an accumulation point
ȳ.
• Since C is closed, ȳ ∈ C. By Lemma 8, ȳ ∈ R(T̄ ).

3. OPTIMALITY CONDITIONS

[Methodology] For proving the optimality condi-
tions (in the form of a Pontryagin’s principle), we
proceed as follows:
• Fix an optimal control ū for the time-optimal

problem.
• Show that ū is optimal for another problem,

easier to treat, referred to as auxiliary problem.
• Establish Pontryagin’s principle for the auxiliary

problem.

3.1 Separation

[Hahn-Banach lemma]

Lemma 11. Let C1 and C2 be two closed and convex
sets of Rn, let C2 be bounded. Assume that C1 ∩
C2 = ∅. Then, there exists q ∈ Rn\{0} such that

〈q, y1〉 ≤ 〈q, y2〉, ∀y1 ∈ C1, ∀y2 ∈ C2.

We say that q separates C1 and C2.

Proof. See Brezis, Theorem 1.7.
Remark. With loss of generality, we can assume that
‖q‖ = 1.

[Hahn-Banach lemma]

Fig. 7. Illustration of Hahn-Banach lemma.

[Normal cones]

Definition 12. Let K be a subset of Rn and let x ∈ K.
The normal cone of K at x, denoted NK(x) is defined
by

NK(x) =
{
q ∈ Rn | 〈q, y − x〉 ≤ 0, ∀y ∈ K

}
.

Some examples.
• If K = {x̄}, then NK(x̄) = Rn.
• If K = Rn, then NK(x) = {0} for any x ∈ Rn.
• Let Rn≥0 := {x ∈ Rn |xi ≥ 0, i = 1, ..., n}.

Let Rn≤0 := {x ∈ Rn |xi ≤ 0, i = 1, ..., n}. Then

NRn
≥0

(0) = Rn≤0 and NRn
≤0

(0) = Rn≥0

[Normal cones]

Fig. 8. A vector in the normal cone.

[A separation result]

Lemma 13. (Separation lemma). Let T̄ denote the
value of the time optimal control problem (P ). As-
sume that 0 < T̄ <∞. Then, there exists q̄ ∈ Rn\{0}
such that

〈q̄, z〉 ≤ 〈q̄, y〉, ∀z ∈ C, ∀y ∈ R(T̄ ).

Corollary 14. For any optimal control ū, we have
q̄ ∈ NC(y[ū](T̄ )).

Proof of the corollary. Take y = y[ū](T̄ ) in the
separation lemma.

[A separation result]

Fig. 9. Illustration of the separation lemma.
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[A separation result] Proof of the separation
lemma.
• Let Tk ↑ T̄ . For all k ∈ N, R(Tk) ∩ C = ∅.
• The set C is convex and closed,R(Tk) is compact

and convex (by Lemma 5 and Lemma 8).
• By the Hahn-Banach Lemma, there exists qk

such that ‖qk‖ = 1 and

〈qk, z〉 ≤ 〈qk, y〉, ∀z ∈ C, ∀y ∈ R(Tk). (3)

Extracting a subsequence if necessary, we assume
that qk → q̄ for some q̄ ∈ Rn with ‖q̄‖ = 1.

[A separation result] We next show that q̄ sepa-
rates C and R(T̄ ).
• Let z ∈ C and let y ∈ R(T̄ ).

Let u ∈ L∞(0, T ;U) be such that y[u](T̄ ) = y.
Set yk = y[u](Tk) ∈ R(Tk).
• Inequality (3) yields:

〈qk, z〉 ≤ 〈qk, yk〉, ∀k ∈ N.
• We pass to the limit and obtain

〈q̄, z〉 ≤ 〈q̄, y〉.

3.2 An auxiliary problem

[An auxiliary problem] Let T > 0, let y0 ∈ Rn,
and let q ∈ Rn be fixed.
Consider the following auxiliary optimal control
problem:

inf
y∈W 1,∞(0,T ;Rn)
u∈L∞(0,T ;U)

〈q, y(T )〉, s.t.:


ẏ(t) =Ay(t) +Bu(t)

y(0) =y0,

u(t) ∈U.
(Paux[q, T ])

Remark: Let (ū, ȳ, T̄ ) be a solution to the time-
optimal problem. Let q̄ be as in the separation lemma.
Then (ū, ȳ) is a solution to Paux[q, T ], with (q, T ) =
(q̄, T̄ ).

[Pre-Hamiltonian and adjoint equation] Define
the pre-Hamiltonian:

H : (u, y, p) ∈ Rm × Rn × Rn 7→ 〈p,Ay +Bu〉 ∈ R.
Note that

H(u, y, p) = 〈A>p, y〉+ 〈B>p, u〉.
Thus,

∇yH(u, y, p) = A>p and ∇uH(u, y, p) = B>p.

Let us define p as the solution to the adjoint equa-
tion (also called costate equation):{

p(T ) =q

−ṗ(t) =A>p(t) = ∇yH(p(t)).
(4)

[Pontryagin’s principle]

Theorem 15. (Pontryagin’s minimum principle). Let
(ȳ, ū) be such that ȳ = y[ū].
Then (ȳ, ū) is a solution to (Paux[q, T ]) if and only
if

ū(t) ∈ argmin
v∈U

H(v, ȳ(t), p(t)), for a.e. t ∈ (0, T ).

Remark:

argmin
v∈U

H(v, ȳ(t), p(t)) = argmin
v∈U

〈B>p(t), v〉.

[Proof of Pontryagin’s principle] “⇐=” Assume
that (ȳ, ū) satisfies Pontryagin’s principle.
Let (y, u) be such that y = y[u]. Then

〈q, y(T )− ȳ(T )〉
= 〈p(T ), y(T )− ȳ(T )〉 − 〈p(0), y(0)− ȳ(0)︸ ︷︷ ︸

=y0−y0=0

〉

=

∫ T

0

d

dt
〈p(t), y(t)− ȳ(t)〉dt

=

∫ T

0

〈ṗ(t), y(t)− ȳ(t)〉+

∫ T

0

〈p(t), ẏ(t)− ˙̄y(t)〉dt

=

∫ T

0

〈−p(t), Ay(t)−Aȳ(t)〉dt

+

∫ T

0

〈p(t), Ay(t) +Bu(t)−Aȳ(t)−Bū(t)〉dt

=

∫ T

0

〈B>p(t), u(t)− ū(t)〉dt ≥ 0.

[Proof of Pontryagin’s principle] “=⇒” Assume
that (ȳ, ū) is optimal. Consider the time function

h : t ∈ [0, T ] 7→ 〈B>p(t), ū(t)〉 ∈ R.
A time t is called Lebesgue point if

h(t) = lim
ε→0

1

2ε

∫ t+ε

t−ε
h(s)ds.

Lebesgue differentiation theorem states that almost
every time t is a Lebesgue function, since h ∈
L1(0, T ).
Let t be a Lebesgue point. Let v ∈ U . Let uε be
defined by

uε(s) =

{
v if s ∈ (t− ε, t+ ε)

ū(s) otherwise.

[Proof of Pontryagin’s principle] The same cal-
culation as above leads to:

0 ≤ 1

2ε
〈q, y[uε](T )− ȳ(T )〉

=
1

2ε

∫ T

0

〈B>p(s), uε(t)− ū(s)〉ds

=
1

2ε

∫ t+ε

t−ε
〈B>p(s), v − ū(s) ds

−→
ε↓0
〈B>p(t), v − ū(t)〉,

as was to be proved.
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3.3 Back to the time-optimal control problem

[Pontryagin for time-optimal problems] We
come back to the time-optimal control problem
(P ).

Theorem 16. (Pontryagin’s principle). Let y0 /∈ C,
assume that T̄ < ∞. Let (ȳ, ū) be a solution to the
original minimum time problem (P ).
Then, there exists q̄ ∈ NC(ȳ(T̄ )), q̄ 6= 0 such that

ū(t) ∈ argmin
v∈U

H(v, ȳ(t), p(t)) = argmin
v∈U

〈B>p, v〉,

(5)
where p is the solution to the costate equation:

−ṗ(t) = A>p(t), p(T̄ ) = q̄.

Remark. Pontryagin’s principle is only a necessary
optimality condition.

[Proof]
• By Lemma 13 and by Corollary 14, there exists
q̄ ∈ NC(ȳ(T̄ )) such that

〈q̄, z〉 ≤ 〈q̄, y〉, ∀z ∈ C, ∀y ∈ R(T̄ ).

We take z = ȳ(T̄ ) ∈ C.
• It follows that (ȳ, ū) is a solution to the

auxiliary problem (Paux[q, T ]), with q = q̄ and
T = T̄ .

• Applying Pontryagin’s principle to the auxiliary
problem (Theorem 15), we obtain (5).

4. BACK TO THE LUNAR LANDING PROBLEM

[Lunar landing problem] Recall the problem:

inf
T≥0

h : [0,T ]→R
v : [0,T ]→R
u : [0,T ]→R

T,


ḣ(t) = v(t), h(0) = h0, h(T ) = 0

v̇(t) = u(t), v(0) = v0, v(T ) = 0

u(t) ∈ [−1, 1].

The dynamics writes:(
ḣ(t)
v̇(t)

)
=

(
0 1
0 0

)(
h(t)
v(t)

)
+

(
0
1

)
u(t).

The lunar landing problem is a special case of (P ),
with

A =

(
0 1
0 0

)
, B =

(
0
1

)
, C = {0}.

[Lunar landing problem] We apply Pontryagin’s
principle. Let T be the optimal time.
• Costate equation (4) reads:

−
(
ṗh(t)
ṗv(t)

)
=

(
0 0
1 0

)(
ph(t)
pv(t)

)
=

(
0

ph(t)

)
.

• Terminal condition: (ph(T ), pv(T )) ∈
NC(h̄(T ), v̄(T )) = R2 does not bring any
information!
• Analytic resolution:

ph(t) = ph(T ), ṗv(t) = −ph(t) = −ph(T )

and thus

pv(t) = pv(T ) + ph(T )(T − t).

[Lunar landing problem]
• The minimization condition reads:

ū(t) ∈ argmin
v∈[−1,1]

(
0
1

)>(
ph(t)
pv(t)

)
v = argmin

v∈[−1,1]

pv(t)v.

It follows that{
ū(t) = −1 if pv(t) > 0

ū(t) = 1 if pv(t) < 0
for a.e. t ∈ [0, T ].

[Lunar landing problem]
We now prove the original conjecture: any opti-
mal control is piecewise constant, with at most two
pieces, taking values in {−1, 1}.
• Case 1: ph(T ) = 0. Then pv(T ) 6= 0. Therefore

· either pv(t) = pv(T ) < 0 =⇒ ū(t) = 1
· or pv(t) = pv(T ) > 0 =⇒ ū(t) = −1.

• Case 2: ph(T ) 6= 0. Then the map t 7→ pv(T ) +
ph(T )(T − t) vanishes at exactly one point, say
τ .
· If τ ≤ 0 or τ ≥ T , then the optimal control

is constant, equal to 1 or -1.
· If τ ∈ (0, T ), then there is a switch.

[A summary] Given a linear time-optimal control
problem, the following methodology can be followed
to analyze it:
(1) Put the state equation in the form ẏ = Ay +Bu.

Check the assumptions state at the beginning
of Section 2.

(2) Existence of a solution: verify the applicability
of Theorem 10.

(3) Derive optimality conditions with Theorem
15.

(4) Deduce structural properties of optimal con-
trols and trajectories.

(5) Transform the problem into a geometric prob-
lem.

(6) Solve it!

7


