SOD 311 — Time-optimal linear problems

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]
e Goal: controlling a dynamical system so as to
reach a target as fast as possible.
e Focus: linear systems y(t) = Ay(t) + Bu(t).
e [ssues: existence of a solution, optimality condi-
tions, graph of feedback k.

1. EXAMPLE: THE LUNAR LANDING PROBLEM

[Accelerating trajectories]
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Fig. 1. Trajectories for u = 1 (acceleration).

[Model] A spatial engine has the dynamics:
mh(t) = u(t), Vt>0, (1)
where:

m mass of the engine

h(t) heigth of the engine at time ¢
u(t) propulsion force at time ¢
v(t) = h(t)|velocity at time t.

Problem: given hy and vg, find the smallest T" > 0 for

which there exist time functions h and u satisfying
(1), (h(0),0(0)) = (ho, vo), and (A(T),v(T)) = (0,0).

[Accelerating trajectories] Let I'; denote the set
of initial conditions for which u = 1 steers (h,v) to
(0,0). We have: (hg,vo) € I'1 <=

ar >
20 v <0
O:’UO+T — 1
0=ho—v3+-v3.

1
0=h0+T’U0—|—§T2 2
Therefore, I'y = {(ho,vo) € R?|vg <0, hy = %’U%.}.

[Mathematical problem]| For simplicity, we take
m = 1. We consider constraints on u.

Given (hg,vg), the problem writes:

h(t) =v(t), h(0)=ho, h(T)=0
0(t) =wu(t), ©v(0)=wvy, o(T)=0,
u(t) € [-1,1].

inf T,
T>0
h: [0,T]—R
v: [0,T]—R
w: [0,T]—-R
Remark. The state (h,v) is uniquely defined by the
control u (via the dynamical system).
For the moment: no theoretical tool at hand... let’s

see what we can do!

[Decelerating trajectories] For u = —1, we have
v(t) =vg — t
1
h(t) :ho + t’UQ — §t2.

We can isolate ¢ in the first line: ¢ = vy — v(t) and
inject the result in the second line:

(1) = ho + (v — v(t) o — 5 (v0 — v(0))”

The curve {(h(t),v(t))|t >0} is the portion of a
parabola.

[Accelerating trajectories] For u = 1, we have
’U(t) =9 —+ t
1
h(t) =hg + tvg + §t2.

We can isolate ¢ in the first line: ¢ = v(t) — vp and
inject the result in the second line:

h(t) = ho + (v(t) — vo)vo + %(v(t) — ).
The curve

{(h(t),v(t)) [t > 0}

is the portion of a parabola.

[Decelerating trajectories]
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Fig. 2. Trajectories for u = —1 (deceleration).




[Decelerating trajectories] Let I'_; denote the set

of initial conditions for which u = —1 steers (h,v) to
(0,0). We have: (hg,vo) € T—1 <

ar>o0

- vg >0
0=vo-T — s 14
1 = — —vg.-

0= ho + Tvg — 51 0= "o +vy = 3%

Therefore,

', = {(ho,vo) S R?

’UQZO
b — 15 5.
0= 2Uo

[A simple case] Consider the case vy = 0.
Then we should (fully) accelerate and (fully) deceler-
ate on equal intervals of time.
o If hg < 0: accelerate (u = 1) until A(t) = hy/2,
then decelerate (u = —1).
o If hy > 0: decelerate (v = —1) until h(t) = hy/2,
then accelerate (u = 1).

[A simple case]

Fig. 5. Some optimal trajectories with null initial
speed.

[A simple case]
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Fig. 3. Optimal control and trajectory for vg = 0 and
ho < 0.

[General case] The theory (developed in the next
sections) tells us the following.
For any (hg,vg) € R?, ~
e There exists an optimal time 7 and an optimal
control .
e Any optimal control takes values in {—1,1}.
e Any optimal control is piecewise constant,
with atmost two pieces.

[General case] In other words, for any optimal
control %, one of the following cases is satisfied:
(1) a(t) =1, for almost every ¢ € (0,T)
(2) u(t) =—1, for a.e. t € (0,7) ~
(3) “Accelerate-Decelerate”: 37 € (0,T') such that:
a(t) =1, for a.e. t € (0,7), u(t) = —1, for ae.
te(r,T). ~
(4) “Decelerate-Accelerate”: 37 € (0,T) such that:
a(t) = —1, for a.e. t € (0,7), u(t) = 1, for ae.
te(r,T).
In the last two cases, 7 is called switching time.
Remark for French readers: we use the english notation (a,b)
for the open interval, instead of the french notation ]a, b].

[A simple case]
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Fig. 4. Optimal control and trajectory for vg = 0 and
ho > 0.

[General case] The problem is reduced to a geo-
metric problem.
Find all trajectories such that...
e starting at the initial condition,
e ending up at the origin,
e made of two portions of parabola (a “red” and a
“blue” one).
We will call them Pontryagin trajectories.
Methodology: for each initial condition,
e find all possible Pontryagin trajectories,
e find out the optimal one (there may exist Pon-
tryagin trajectories which are not optimal).




[General case] First case: (hg,v) lies strictly
under 't UT_1.

One possibility for the scenario “accelerate-
decelerate”.
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[General case] First case: (hg,vp) lies strictly
under I'y UT_1.

Zero possibility for the scenario “decelerate-
accelerate”.
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[General case] Conclusion: Whatever the initial
condition, there is exactly one Pontryagin trajectory,
which is necessarily optimal.
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Fig. 6. Phase portrait of optimal trajectories.
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[General case] We finally obtain a relation in feed-
back form for optimal controls @ with associated
trajectory (h,?):

u(t) = w(h(t),0(t)),
where « is defined by:
1 if (h, ’U) eIy
—1if (h,U) cel'_4
1 if (h,v) lies strictly under I'_; UT,
—1 if (h,v) lies strictly above I'_; UT',
for any (h,v) € R*\{0}.
Remark: The feedback relation holds whatever the
initial condition of the problem.

k(h,v) =

[General case] Second case: (hg,vg) lies strictly
above I'y UT_;.

One possibility for the scenario “decelerate-
accelerate”.
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[Summary] The three main steps of our methodol-
ogy:
e (Calculation of trajectories with constant
controls (with extremal values).
e Theory — structural properties of optimal
controls.
e Reformulation of the problem as a geometric
problem.

2. EXISTENCE OF A SOLUTION

[General case] Second case: (hg,vg) lies strictly
above I'y U T'_1. Zero possibility for the scenario
“accelerate-decelerate”.
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[Framework]| A general linear time-optimal control
problem:

y(t) =Ay(t) + Bu(t),
. . y(O) =Yo,
%g% T, s.t. y(T) C,
Ve o T u(t) €.

weL™(0,T;R™)
(P)
Data of the problem and assumptions:
e Initial condition: yo € R™
e Dynamics’ coefficients: A € R" ™ and B €
R?'LX'HL
e A control set: U € R™, assumed convex, com-
pact, non-empty
e A target: C' C R™, assumed convex, closed, non-
empty.




[Matrix exponential]

Definition 1. Let M € R™"*". We call matrix expo-
nential eM the matrix

— 1
M _ - k nxn
eV = Z k:!M € R™*™,
k=0
Lemma 2. e For any operator norm || - ||, we have
le™]| < el
e For all t € R, we have L&' = Me!M = M)/
e Given zy € R", let z: [0,00) — R™ be the
solution to
(t) = Mx(t), x(0) = xo.
Then z(t) = Mz, for all t > 0.

[Closedness of the reachable set]

Lemma 8. (Closedness lemma). Let (7x)ken be a
convergent sequence of positive real numbers with
limit 7 > 0. Assume that 7, > 7, Vk € N.
Let (yx)ken be a convergent sequence in R™ with limit
7. Assume that

yr € R(tx), VkeN.
Then § € R(7).
Corollary 9. For all t > 0, the set R(t) is closed.

[State equation] A pair (y,u) € W1H>°(0,T;R") x
L>(0,T;R™) satisfies the state equation:
y(t) = Ay(t) + Bu(t), y(0) = yo if and only if
t
y(t) = yo +/ <Ay(5) + Bu(s))ds7 vt € [0,T].
0

(2)
Theorem 8. (Picard-Lindel6f / FR: Cauchy-Lipschitz).
Given yp € R™ and u € L*°(0,T;R™), there exists a
unique y satisfying (2). Moreover,

t
y(t) = eyo +/ ¢4 Bu(s)ds. [Duhamel]
0

Notation: ylul.

[Proof of the closedness lemmal]

Proof. Step 1. For all k € N, let u, € L>=(0, 74;U) be

such that y[ug|(7x) = yx. As a consequence of Lemma

5, there exists M > 0 (independent of k) such that
[9[urlll s 0. rpimem) < M.

Thus ylug](+) is M-Lipschitz, that is

[ylur](t2) —ylul(t) ]| < Mtz —t2|,  Viy, b2 € [0, T].

Next, we have ||y[ui](T) — 7| <

1y[ur](7) = ylur](7) |+l ylur] () =5l = 0.
—_——

SMlka‘T'l Y

Thus ylug](T) — 7.

[Reachable set] Some notation:
o L>°(0,T;U): set of measurable functions from
(0,T) to U, -
e T: the value of problem (P) (T = oo if (P) is
infeasible).
Definition 4. Givent > 0, the reachable set at time
t, R(t), is defined by
R(t) = {ylu](t) |u € L=(0,1;U) }.
Lemma 5. e For all T > 0, the set Up<i<7R (%) is
bounded.
e For all ¢t > 0, the reachable set R(t) is convex.

Proof. Exercise (use Duhamel’s formula and bound-
edness of U).

[Proof of the closedness lemmal]
Step 2. Consider the linear map L: u €
L?(0,7;R™) — R"™ defined by

L(u) = /f T4 Bu(s) ds.

0
By Cauchy-Schwarz inequality, we have

/ CT=NAL B - lu(s)]| ds
0

T s 1/2
131 ([ =140 as) " s s

<oo

This proves that the linear form L is continuous.
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[Weak compactness]

Definition 6. Let F be a Banach space. Let (ej)ren
be a sequence in F'. The sequence converges weakly
to € € F (notation: e, — €) if

L(ex) — L(e),
for all continuous and linear map L: F — R.
Remark. If e, — &, then L(ey) — L(e) for any
continuous and linear map L: F — RF.
Lemma 7. Let E be a closed and convex subset
of a Hilbert space F. Let (egx)ren be a bounded
sequence in F. Then there exists a weakly convergent
subsequence (eg, )qen with weak limit in .
Proof. See Corollary 3.22 and Proposition 5.1 in
Functional Analysis, by H. Brézis.

[Proof of the closedness lemma]
Step 3. Apply Lemma 7:

e L2(0,7;R™) is a Hilbert space

e L>(0,7;U) is convex, closed, and bounded.
Then the sequence uy (restricted to (0,7)) has a
weakly convergent subsequence, with limit .
We have:

slun )(7) = o+ [T B (5)ds
0

= ™ yo + L(uy,) — € *yo+ L(a) = y[u](7),
proving that § = y[a](7) € R(T).




[Existence result]

Theorem 10. Assume that T < oo. There exists an

optimal control, that is, there exists u such that

yla)(T) € C.

Proof. Consider the set of times at which the target

can be reached, that is:
T={T>0|R(T)NC # 0}.

By assumption 7 is non empty. By definition,

T=infT. ~

Our task: proving that T € T.

[Existence result] -
e It suffices to show that R(T) N C # 0.
e Let 7, | T be such that for all £ € N, there
exists yx € R(1x) NC. By Lemma 5, (yg)gen iS
bounded. Thus it has an accumulation point

Y. _
e Since C'is closed, § € C. By Lemma 8,5 € R(T).

[Normal cones]
Definition 12. Let K be a subset of R” and let z € K.
The normal cone of K at x, denoted Nk (x) is defined
by
Ni(z) = {g € R"[(q,y —x) <0, Vy € K}.
Some examples.
o If K = {Z}, then Ng(Z) = R™.
o If K =R", then Ng(x) = {0} for any z € R™.
e Let RY :={z € R"|x; >0,i=1,..,n}.
Let R%y:={z € R"|z; <0,i=1,...,n}. Then

NRQO(O): %0 and NR%O(()): gO

3. OPTIMALITY CONDITIONS

[Methodology] For proving the optimality condi-
tions (in the form of a Pontryagin’s principle), we
proceed as follows:
e Fix an optimal control @ for the time-optimal
problem.
e Show that @ is optimal for another problem,
easier to treat, referred to as auxiliary problem.
e Establish Pontryagin’s principle for the auxiliary
problem.

[Normal cones]

Fig. 8. A vector in the normal cone.

3.1 Separation

[Hahn-Banach lemma]

Lemma 11. Let Cq and Cs be two closed and convex

sets of R™, let (5 be bounded. Assume that C; N

Cy = (. Then, there exists ¢ € R"\{0} such that
(@:y1) <(q:y2), VYy1 € C1, Vya € Co.

We say that ¢ separates C; and Cs.

Proof. See Brezis, Theorem 1.7.
Remark. With loss of generality, we can assume that

lall = 1.

[A separation result]

Lemma 13. (Separation lemma). Let T denote the
value of the time optimal control problem (P). As-
sume that 0 < T' < oo. Then, there exists § € R™\{0}
such that

(@.2) <(aqy), V=€C, WyeR().
Corollary 14. For any optimal control %, we have
7 € No(ylal(T). )
Proof of the corollary. Take y = y[a](T) in the
separation lemma.

[Hahn-Banach lemmal]

(q,z) <M Q,z):]ﬂ (g,z) > M

Fig. 7. Illustration of Hahn-Banach lemma.

[A separation result]

R(T)

Fig. 9. Illustration of the separation lemma.




[A separation result] Proof of the separation
lemma. ~
e Let T, 1 T.Forall k e N, R(T,) N C = 0.
e The set C is convex and closed, R(T}) is compact
and convex (by Lemma 5 and Lemma 8).
e By the Hahn-Banach Lemma, there exists gy
such that ||gx|]| = 1 and

(ak,2) < {ar,y), Yz€C, Vye R(Tk). (3)

Extracting a subsequence if necessary, we assume
that g — g for some ¢ € R™ with ||| = 1.

[Pontryagin’s principle]
Theorem 15. (Pontryagin’s minimum principle). Let
(g, u) be such that g = y[a].
Then (7, @) is a solution to (Paux[g,T]) if and only
if

u(t) € argmin H (v, g(t),p(t)), for a.e.t € (0,T).

velU
Remark:
argmin H (v, §(t), p(t)) = argmin (B p(t),v).
velU veU

[A separation result] We next show that § sepa-
rates C and R(T). ~
o Let z € C and let y € R(T). -
Let w € L*>(0,T;U) be such that y[u](T) = y.
Set yr = y[u](Tk) € R(Tk).
e Inequality (3) yields:

(ar,2) < {ar yx), Yk eN.
e We pass to the limit and obtain

(@,2) <{q.y)-

8.2 An auziliary problem

[Proof of Pontryagin’s principle] “<—=”" Assume
that (g, u) satisfies Pontryagin’s principle.
Let (y,u) be such that y = y[u]. Then

(¢, y(T) —y(T))
= (p(T), y(T) — y(T)) — (p(0),y(0) — 5(0))

S—
T d =yo—Yyo=0
:/ %@(t),y(t)*ﬂ(t))dt
0

T T

- / (D), y(t) — () + / (1), (1) — (1)) dt
OT 0

- / (—p(t), Ay(t) — Ag(t)) dt

- /0 (BTp(t), u(t) — a(t)) dt > 0.

[An auxiliary problem] Let T > 0, let yo € R™,
and let ¢ € R™ be fixed.

Consider the following auxiliary optimal control
problem:

Gwl,ggn(g T_Rn)<q,y(T)>, s.t-r ¢ y(0) =y,
quL”(O,&“;,U) ’Lb(t) el
(Paux[Q7 T])

Remark: Let (4,7, T) be a solution to the time-
optimal problem. Let ¢ be as in the separation lemma.
Then (@, %) is a solution to Paux[g, T, with (¢,T) =
(@.7).

[Proof of Pontryagin’s principle] “—" Assume

that (g, u) is optimal. Consider the time function
h:te0,T]— (B p(t),a(t)) € R.

A time t is called Lebesgue point if

Lebesgue differentiation theorem states that almost
every time t is a Lebesgue function, since h €
LY(0,7).

Let t be a Lebesgue point. Let v € U. Let u. be
defined by

ue(s) = v ifse(t—et+e)
=7 | @(s) otherwise.

[Pre-Hamiltonian and adjoint equation] Define
the pre-Hamiltonian:

H: (u,y,p) € R™ x R" x R" — (p, Ay + Bu) € R.
Note that
H(u,y,p) = (ATp,y) + (B p,u).
Thus,
VyH(u,y,p) = ATp and V.H(u,y,p)=BTp.
Let us define p as the solution to the adjoint equa-
tion (also called costate equation):

{ p(T) =q (4)
—p(t) =ATp(t) = VyH(p(t)).

[Proof of Pontryagin’s principle] The same cal-
culation as above leads to:

0 < X (q,ylu)(T) - §(T))

215 .
=5 || (BTp(s),uelt) —a(s)) ds
B 1 t+e - - d
=5 | (BTRs) 0 () s
— (Bp(0), v~ u(t).

as was to be proved.




3.8 Back to the time-optimal control problem

[Pontryagin for time-optimal problems] We
come back to the time-optimal control problem
(P).

Theorem 16. (Pontryagin’s principle). Let yo ¢ C,
assume that T < co. Let (7, @) be a solution to the
original minimum time problem (P).

Then, there exists § € No(4(T')), ¢ # 0 such that

a(t) € argmin H(v,3(t),p(t)) = argmin (B ' p,v),
vel vel

(5)
where p is the solution to the costate equation:
—p(t) = ATp(t), p(T)=q.
Remark. Pontryagin’s principle is only a necessary
optimality condition.

[Lunar landing problem]
e The minimization condition reads:

-
_ (0 (pn(t) .
4(t) € argmin ( ) ( v = argmin p,(¢)v.

() ve[=1,1] 1 po(t) ve[=1,1] ®)
It follows that

{a(t) =-1 ifp,(t)>0

alt) =1 if py(t) <0 for a.e. t € [0, 7.

[Proof]
e By Lemma 13 and by Corollary 14, there exists
d € Nco(g(T)) such that

(@2) <(@y), VzeC, VyeR().
We take z = g(T) € C.

e It follows that (7,u) is a solution to the
auxiliary problem (P,x[g, T]), with ¢ = § and
T=T.

e Applying Pontryagin’s principle to the auxiliary
problem (Theorem 15), we obtain (5).

[Lunar landing problem)]
We now prove the original conjecture: any opti-
mal control is piecewise constant, with at most two
pieces, taking values in {—1,1}.
e Case 1: py(T) = 0. Then p,(T) # 0. Therefore
- either p,(t) = p,(T) < 0= u(t) =1
- or py(t) = pu(T) > 0= u(t) = —1.
e Case 2: pp(T) # 0. Then the map t — p,(T) +
pr(T)(T — t) vanishes at exactly one point, say
T.
- If 7 <0or7>T, then the optimal control
is constant, equal to 1 or -1.
- If 7 € (0,7), then there is a switch.

4. BACK TO THE LUNAR LANDING PROBLEM

[Lunar landing problem] Recall the problem:
h(t) = v(t),  h(0) = ho, M(T) =0

inf T, ¢ 0(t) =u(t), v(0)=wvy, v(T)=0
T>0

wioioe Lu(t) e 1,1

v: [0,T]—=R

w: [0,T]—R

The dynamics writes:

() = (02) (0) + (2) e

The lunar landing problem is a special case of (P),

with
A:<8(1)>, B:(?), C = {o}.

[A summary] Given a linear time-optimal control

problem, the following methodology can be followed

to analyze it:

(1) Put the state equation in the form y = Ay + Bu.
Check the assumptions state at the beginning
of Section 2.

(2) Existence of a solution: verify the applicability
of Theorem 10.

(3) Derive optimality conditions with Theorem
15.

(4) Deduce structural properties of optimal con-
trols and trajectories.

(5) Transform the problem into a geometric prob-
lem.

(6) Solve it!

[Lunar landing problem] We apply Pontryagin’s
principle. Let T" be the optimal time.
e Costate equation (4) reads:

_(n(®) _ (00 (pu(®)) _ [ ©
Pu(t) 10) \pu(t) pu(t)) "

e Terminal  condition:  (pp(T), pu(T)) €
Ne(h(T),5(T)) = R? does not bring any
information!

e Analytic resolution:

pr(t) =pu(T), Po(t) = —pa(t) = —pn(T)
and thus

pu(t) = po(T) + pn(T)(T —1).




