SOD 311 - Time-optimal linear problems

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- Goal: controlling a dynamical system so as to reach a target as fast as possible.
- Focus: linear systems $\dot{y}(t)=A y(t)+B u(t)$.
- Issues: existence of a solution, optimality conditions, graph of feedback κ.

1. EXAMPLE: THE LUNAR LANDING PROBLEM
[Model] A spatial engine has the dynamics:

$$
\begin{equation*}
m \ddot{h}(t)=u(t), \quad \forall t \geq 0 \tag{1}
\end{equation*}
$$

where:

m	mass of the engine
$h(t)$	heigth of the engine at time t
$u(t)$	propulsion force at time t
$v(t)=\dot{h}(t)$	velocity at time t.

Problem: given h_{0} and v_{0}, find the smallest $T>0$ for which there exist time functions h and u satisfying $(1),(h(0), v(0))=\left(h_{0}, v_{0}\right)$, and $(h(T), v(T))=(0,0)$.
[Mathematical problem] For simplicity, we take $m=1$. We consider constraints on u.
Given $\left(h_{0}, v_{0}\right)$, the problem writes:
$\inf _{\substack{T \rightarrow 0 \\ h:[0, T] \rightarrow \mathbb{R} \\ v:[0, T]] \rightarrow \mathbb{R} \\ u:[0, T] \rightarrow \mathbb{R}}} T,\left\{\begin{array}{lll}\dot{h}(t)=v(t), & h(0)=h_{0}, & h(T)=0, \\ \dot{v}(t)=u(t), & v(0)=v_{0}, & v(T)=0, \\ u(t) \in[-1,1] .\end{array}\right.$
Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system).
For the moment: no theoretical tool at hand... let's see what we can do!
[Accelerating trajectories] For $u=1$, we have

$$
\left\{\begin{aligned}
v(t) & =v_{0}+t \\
h(t) & =h_{0}+t v_{0}+\frac{1}{2} t^{2} .
\end{aligned}\right.
$$

We can isolate t in the first line: $t=v(t)-v_{0}$ and inject the result in the second line:

$$
h(t)=h_{0}+\left(v(t)-v_{0}\right) v_{0}+\frac{1}{2}\left(v(t)-v_{0}\right)^{2} .
$$

The curve

$$
\{(h(t), v(t)) \mid t \geq 0\}
$$

is the portion of a parabola.

[Accelerating trajectories]

Fig. 1. Trajectories for $u=1$ (acceleration).
[Accelerating trajectories] Let Γ_{1} denote the set of initial conditions for which $u=1$ steers (h, v) to $(0,0)$. We have: $\left(h_{0}, v_{0}\right) \in \Gamma_{1} \Longleftrightarrow$
$\left\{\begin{array}{l}\exists T \geq 0 \\ 0=v_{0}+T \\ 0=h_{0}+T v_{0}+\frac{1}{2} T^{2}\end{array} \Longleftrightarrow\left\{\begin{array}{l}v_{0} \leq 0 \\ 0=h_{0}-v_{0}^{2}+\frac{1}{2} v_{0}^{2} .\end{array}\right.\right.$
Therefore, $\Gamma_{1}=\left\{\left(h_{0}, v_{0}\right) \in \mathbb{R}^{2} \mid v_{0} \leq 0, h_{0}=\frac{1}{2} v_{0}^{2} \cdot\right\}$.
[Decelerating trajectories] For $u=-1$, we have

$$
\left\{\begin{array}{l}
v(t)=v_{0}-t \\
h(t)=h_{0}+t v_{0}-\frac{1}{2} t^{2} .
\end{array}\right.
$$

We can isolate t in the first line: $t=v_{0}-v(t)$ and inject the result in the second line:

$$
h(t)=h_{0}+\left(v_{0}-v(t)\right) v_{0}-\frac{1}{2}\left(v_{0}-v(t)\right)^{2} .
$$

The curve $\{(h(t), v(t)) \mid t \geq 0\}$ is the portion of a parabola.

[Decelerating trajectories]

Fig. 2. Trajectories for $u=-1$ (deceleration).
[Decelerating trajectories] Let Γ_{-1} denote the set of initial conditions for which $u=-1$ steers (h, v) to $(0,0)$. We have: $\left(h_{0}, v_{0}\right) \in \Gamma_{-1} \Longleftrightarrow$
$\left\{\begin{array}{l}\exists T \geq 0 \\ 0=v_{0}-T \\ 0=h_{0}+T v_{0}-\frac{1}{2} T^{2}\end{array} \Longleftrightarrow\left\{\begin{array}{l}v_{0} \geq 0 \\ 0=h_{0}+v_{0}^{2}-\frac{1}{2} v_{0}^{2} .\end{array}\right.\right.$
Therefore,

$$
\Gamma_{-1}=\left\{\begin{array}{l|l}
\left(h_{0}, v_{0}\right) \in \mathbb{R}^{2} & \begin{array}{l}
v_{0} \geq 0 \\
h_{0}=-\frac{1}{2} v_{0}^{2}
\end{array}
\end{array}\right\} .
$$

[A simple case] Consider the case $v_{0}=0$.
Then we should (fully) accelerate and (fully) decelerate on equal intervals of time.

- If $h_{0}<0$: accelerate $(u=1)$ until $h(t)=h_{0} / 2$, then decelerate $(u=-1)$.
- If $h_{0}>0$: decelerate $(u=-1)$ until $h(t)=h_{0} / 2$, then accelerate $(u=1)$.

[A simple case]

Fig. 3. Optimal control and trajectory for $v_{0}=0$ and $h_{0}<0$.

[A simple case]

Fig. 4. Optimal control and trajectory for $v_{0}=0$ and $h_{0}>0$.

[A simple case]

Fig. 5. Some optimal trajectories with null initial speed.
[General case] The theory (developed in the next sections) tells us the following.
For any $\left(h_{0}, v_{0}\right) \in \mathbb{R}^{2}$,

- There exists an optimal time \bar{T} and an optimal control \bar{u}.
- Any optimal control takes values in $\{-1,1\}$.
- Any optimal control is piecewise constant, with atmost two pieces.
[General case] In other words, for any optimal control \bar{u}, one of the following cases is satisfied:
(1) $\bar{u}(t)=1$, for almost every $t \in(0, \bar{T})$
(2) $\bar{u}(t)=-1$, for a.e. $t \in(0, \bar{T})$
(3) "Accelerate-Decelerate": $\exists \tau \in(0, \bar{T})$ such that: $\bar{u}(t)=1$, for a.e. $t \in(0, \tau), \bar{u}(t)=-1$, for a.e. $t \in(\tau, \bar{T})$.
(4) "Decelerate-Accelerate": $\exists \tau \in(0, \bar{T})$ such that: $\bar{u}(t)=-1$, for a.e. $t \in(0, \tau), \bar{u}(t)=1$, for a.e. $t \in(\tau, \bar{T})$.
In the last two cases, τ is called switching time.
Remark for French readers: we use the english notation (a, b) for the open interval, instead of the french notation $] a, b[$.
[General case] The problem is reduced to a geometric problem.
Find all trajectories such that...
- starting at the initial condition,
- ending up at the origin,
- made of two portions of parabola (a "red" and a "blue" one).
We will call them Pontryagin trajectories.
Methodology: for each initial condition,
- find all possible Pontryagin trajectories,
- find out the optimal one (there may exist Pontryagin trajectories which are not optimal).
[General case] First case: $\left(h_{0}, v_{0}\right)$ lies strictly under $\Gamma_{1} \cup \Gamma_{-1}$.
One possibility for the scenario "acceleratedecelerate".

[General case] First case: $\left(h_{0}, v_{0}\right)$ lies strictly under $\Gamma_{1} \cup \Gamma_{-1}$.
Zero possibility for the scenario "decelerateaccelerate".

[General case] Second case: $\left(h_{0}, v_{0}\right)$ lies strictly above $\Gamma_{1} \cup \Gamma_{-1}$.
One possibility for the scenario "decelerateaccelerate".

[General case] Second case: $\left(h_{0}, v_{0}\right)$ lies strictly above $\Gamma_{1} \cup \Gamma_{-1}$. Zero possibility for the scenario "accelerate-decelerate".

[General case] Conclusion: Whatever the initial condition, there is exactly one Pontryagin trajectory, which is necessarily optimal.

Fig. 6. Phase portrait of optimal trajectories.
[General case] We finally obtain a relation in feedback form for optimal controls \bar{u} with associated trajectory (\bar{h}, \bar{v}) :

$$
\bar{u}(t)=\kappa(\bar{h}(t), \bar{v}(t)),
$$

where κ is defined by:
$\kappa(h, v)=\left\{\begin{array}{cl}1 & \text { if }(h, v) \in \Gamma_{1} \\ -1 & \text { if }(h, v) \in \Gamma_{-1} \\ 1 & \text { if }(h, v) \text { lies strictly under } \Gamma_{-1} \cup \Gamma_{1} \\ -1 & \text { if }(h, v) \text { lies strictly above } \Gamma_{-1} \cup \Gamma_{1},\end{array}\right.$ for any $(h, v) \in \mathbb{R}^{2} \backslash\{0\}$.
Remark: The feedback relation holds whatever the initial condition of the problem.
[Summary] The three main steps of our methodology:

- Calculation of trajectories with constant controls (with extremal values).
- Theory \rightarrow structural properties of optimal controls.
- Reformulation of the problem as a geometric problem.

2. EXISTENCE OF A SOLUTION

[Framework] A general linear time-optimal control problem:

$$
\inf _{\substack{T \geq 0 \tag{P}\\
y \in W^{1, \infty}\left(0, T ; \mathbb{R}^{n}\right) \\
u \in L^{\infty}\left(0, T ; \mathbb{R}^{m}\right)}} T, \quad \text { s.t.: }\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+B u(t), \\
y(0)=y_{0}, \\
y(T) \in C, \\
u(t) \in U .
\end{array}\right.
$$

Data of the problem and assumptions:

- Initial condition: $y_{0} \in \mathbb{R}^{n}$
- Dynamics' coefficients: $A \in \mathbb{R}^{n \times n}$ and $B \in$ $\mathbb{R}^{n \times m}$
- A control set: $U \subset \mathbb{R}^{m}$, assumed convex, compact, non-empty
- A target: $C \subset \mathbb{R}^{n}$, assumed convex, closed, nonempty.

[Matrix exponential]

Definition 1. Let $M \in \mathbb{R}^{n \times n}$. We call matrix exponential e^{M} the matrix

$$
e^{M}=\sum_{k=0}^{\infty} \frac{1}{k!} M^{k} \in \mathbb{R}^{n \times n}
$$

Lemma 2. - For any operator norm $\|\cdot\|$, we have $\left\|e^{M}\right\| \leq e^{\|M\|}$.

- For all $t \in \mathbb{R}$, we have $\frac{d}{d t} e^{t M}=M e^{t M}=e^{t M} M$.
- Given $x_{0} \in \mathbb{R}^{n}$, let $x:[0, \infty) \rightarrow \mathbb{R}^{n}$ be the solution to

$$
\dot{x}(t)=M x(t), \quad x(0)=x_{0} .
$$

Then $x(t)=e^{t M} x_{0}$, for all $t \geq 0$.
[State equation] A pair $(y, u) \in W^{1, \infty}\left(0, T ; \mathbb{R}^{n}\right) \times$ $L^{\infty}\left(0, T ; \mathbb{R}^{m}\right)$ satisfies the state equation: $\dot{y}(t)=A y(t)+B u(t), y(0)=y_{0}$ if and only if

$$
\begin{equation*}
y(t)=y_{0}+\int_{0}^{t}(A y(s)+B u(s)) \mathrm{d} s, \quad \forall t \in[0, T] . \tag{2}
\end{equation*}
$$

Theorem 3. (Picard-Lindelöf / FR: Cauchy-Lipschitz). Given $y_{0} \in \mathbb{R}^{n}$ and $u \in L^{\infty}\left(0, T ; \mathbb{R}^{m}\right)$, there exists a unique y satisfying (2). Moreover, $y(t)=e^{t A} y_{0}+\int_{0}^{t} e^{(t-s) A} B u(s) d s . \quad$ [Duhamel]
Notation: $y[u]$.
[Reachable set] Some notation:

- $L^{\infty}(0, T ; U)$: set of measurable functions from $(0, T)$ to U,
- \bar{T} : the value of problem $(P)(\bar{T}=\infty$ if (P) is infeasible).
Definition 4. Given $t \geq 0$, the reachable set at time $t, \mathcal{R}(t)$, is defined by

$$
\mathcal{R}(t)=\left\{y[u](t) \mid u \in L^{\infty}(0, t ; U)\right\} .
$$

Lemma 5. - For all $T \geq 0$, the set $\cup_{0 \leq t \leq T} \mathcal{R}(t)$ is bounded.

- For all $t \geq 0$, the reachable set $\mathcal{R}(t)$ is convex.

Proof. Exercise (use Duhamel's formula and boundedness of U).

[Weak compactness]

Definition 6. Let F be a Banach space. Let $\left(e_{k}\right)_{k \in \mathbb{N}}$ be a sequence in F. The sequence converges weakly to $\bar{e} \in F$ (notation: $e_{k} \rightharpoonup \bar{e}$) if

$$
L\left(e_{k}\right) \rightarrow L(\bar{e}),
$$

for all continuous and linear map $L: F \rightarrow \mathbb{R}$.
Remark. If $e_{k} \rightharpoonup \bar{e}$, then $L\left(e_{k}\right) \rightarrow L(\bar{e})$ for any continuous and linear map $L: F \rightarrow \mathbb{R}^{k}$.
Lemma 7. Let E be a closed and convex subset of a Hilbert space F. Let $\left(e_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in E. Then there exists a weakly convergent subsequence $\left(e_{k_{q}}\right)_{q \in \mathbb{N}}$ with weak limit in E.
Proof. See Corollary 3.22 and Proposition 5.1 in Functional Analysis, by H. Brézis.

[Closedness of the reachable set]

Lemma 8. (Closedness lemma). Let $\left(\tau_{k}\right)_{k \in \mathbb{N}}$ be a convergent sequence of positive real numbers with limit $\bar{\tau} \geq 0$. Assume that $\tau_{k} \geq \bar{\tau}, \forall k \in \mathbb{N}$.
Let $\left(y_{k}\right)_{k \in \mathbb{N}}$ be a convergent sequence in \mathbb{R}^{n} with limit \bar{y}. Assume that

$$
y_{k} \in \mathcal{R}\left(\tau_{k}\right), \quad \forall k \in \mathbb{N} .
$$

Then $\bar{y} \in \mathcal{R}(\bar{\tau})$.
Corollary 9. For all $t \geq 0$, the set $\mathcal{R}(t)$ is closed.

[Proof of the closedness lemma]

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_{k} \in L^{\infty}\left(0, \tau_{k} ; U\right)$ be such that $y\left[u_{k}\right]\left(\tau_{k}\right)=y_{k}$. As a consequence of Lemma 5 , there exists $M>0$ (independent of k) such that

$$
\left\|\dot{y}\left[u_{k}\right]\right\|_{L^{\infty}\left(0, \tau_{k} ; \mathbb{R}^{m}\right)} \leq M
$$

Thus $y\left[u_{k}\right](\cdot)$ is M-Lipschitz, that is
$\left\|y\left[u_{k}\right]\left(t_{2}\right)-y\left[u_{k}\right]\left(t_{1}\right)\right\| \leq M\left|t_{2}-t_{1}\right|, \quad \forall t_{1}, t_{2} \in[0, T]$.
Next, we have $\left\|y\left[u_{k}\right](\bar{\tau})-\bar{y}\right\| \leq$

$$
\underbrace{\left\|y\left[u_{k}\right](\bar{\tau})-y\left[u_{k}\right]\left(\tau_{k}\right)\right\|}_{\leq M\left|\tau_{k}-\bar{\tau}\right|}+\|\underbrace{y\left[u_{k}\right]\left(\tau_{k}\right)}_{y_{k}}-\bar{y}\| \rightarrow 0 .
$$

Thus $y\left[u_{k}\right](\bar{\tau}) \rightarrow \bar{y}$.

[Proof of the closedness lemma]

Step 2. Consider the linear map $L: u \in$ $L^{2}\left(0, \bar{\tau} ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}^{n}$ defined by

$$
L(u)=\int_{0}^{\bar{\tau}} e^{(\bar{\tau}-s) A} B u(s) \mathrm{d} s
$$

By Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
|L(u)| & \leq \int_{0}^{\bar{\tau}} e^{(\bar{\tau}-s)\|A\|} \cdot\|B\| \cdot\|u(s)\| \mathrm{d} s \\
& \leq \underbrace{\|B\| \cdot\left(\int_{0}^{\bar{\tau}} e^{2(\bar{\tau}-s))\|A\|} \mathrm{d} s\right)^{1 / 2}}_{<\infty}\|u\|_{L^{2}\left(0, \bar{\tau} ; \mathbb{R}^{m}\right)} .
\end{aligned}
$$

This proves that the linear form L is continuous.

[Proof of the closedness lemma]

Step 3. Apply Lemma 7:

- $L^{2}\left(0, \bar{\tau} ; \mathbb{R}^{m}\right)$ is a Hilbert space
- $L^{\infty}(0, \bar{\tau} ; U)$ is convex, closed, and bounded.

Then the sequence u_{k} (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit \bar{u}.
We have:

$$
\begin{aligned}
& \underbrace{y\left[u_{k_{q}}\right](\bar{\tau})}_{\longrightarrow \bar{y}}=e^{\bar{\tau} A} y_{0}+\int_{0}^{\bar{\tau}} e^{(\bar{\tau}-s) A} B u_{k_{q}}(s) d s \\
& \quad=e^{\bar{\tau} A} y_{0}+L\left(u_{k_{q}}\right) \longrightarrow e^{\bar{\tau} A} y_{0}+L(\bar{u})=y[\bar{u}](\bar{\tau}),
\end{aligned}
$$

proving that $\bar{y}=y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau})$.

[Existence result]

Theorem 10. Assume that $\bar{T}<\infty$. There exists an optimal control, that is, there exists \bar{u} such that

$$
y[\bar{u}](\bar{T}) \in C
$$

Proof. Consider the set of times at which the target can be reached, that is:

$$
\mathcal{T}=\{T \geq 0 \mid \mathcal{R}(T) \cap C \neq \emptyset\}
$$

By assumption \mathcal{T} is non empty. By definition, $\bar{T}=\inf \mathcal{T}$.
Our task: proving that $\bar{T} \in \mathcal{T}$.

[Existence result]

- It suffices to show that $\mathcal{R}(\bar{T}) \cap C \neq \emptyset$.
- Let $\tau_{k} \downarrow \bar{T}$ be such that for all $k \in \mathbb{N}$, there exists $y_{k} \in \mathcal{R}\left(\tau_{k}\right) \cap C$. By Lemma $5,\left(y_{k}\right)_{k \in \mathbb{N}}$ is bounded. Thus it has an accumulation point \bar{y}.
- Since C is closed, $\bar{y} \in C$. By Lemma $8, \bar{y} \in \mathcal{R}(\bar{T})$.

3. OPTIMALITY CONDITIONS

[Methodology] For proving the optimality conditions (in the form of a Pontryagin's principle), we proceed as follows:

- Fix an optimal control \bar{u} for the time-optimal problem.
- Show that \bar{u} is optimal for another problem, easier to treat, referred to as auxiliary problem.
- Establish Pontryagin's principle for the auxiliary problem.

3.1 Separation

[Hahn-Banach lemma]

Lemma 11. Let C_{1} and C_{2} be two closed and convex sets of \mathbb{R}^{n}, let C_{2} be bounded. Assume that $C_{1} \cap$ $C_{2}=\emptyset$. Then, there exists $q \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\left\langle q, y_{1}\right\rangle \leq\left\langle q, y_{2}\right\rangle, \quad \forall y_{1} \in C_{1}, \forall y_{2} \in C_{2} .
$$

We say that q separates C_{1} and C_{2}.
Proof. See Brezis, Theorem 1.7.
Remark. With loss of generality, we can assume that $\|q\|=1$.

[Hahn-Banach lemma]

Fig. 7. Illustration of Hahn-Banach lemma.

[Normal cones]

Definition 12. Let K be a subset of \mathbb{R}^{n} and let $x \in K$. The normal cone of K at x, denoted $N_{K}(x)$ is defined by

$$
N_{K}(x)=\left\{q \in \mathbb{R}^{n} \mid\langle q, y-x\rangle \leq 0, \forall y \in K\right\} .
$$

Some examples.

- If $K=\{\bar{x}\}$, then $N_{K}(\bar{x})=\mathbb{R}^{n}$.
- If $K=\mathbb{R}^{n}$, then $N_{K}(x)=\{0\}$ for any $x \in \mathbb{R}^{n}$.
- Let $\mathbb{R}_{>0}^{n}:=\left\{x \in \mathbb{R}^{n} \mid x_{i} \geq 0, i=1, \ldots, n\right\}$.

Let $\mathbb{R}_{\leq 0}^{\bar{n}}:=\left\{x \in \mathbb{R}^{n} \mid x_{i} \leq 0, i=1, \ldots, n\right\}$. Then

$$
N_{\mathbb{R}_{\geq 0}^{n}}(0)=\mathbb{R}_{\leq 0}^{n} \quad \text { and } \quad N_{\mathbb{R}_{\leq 0}^{n}}(0)=\mathbb{R}_{\geq 0}^{n}
$$

[Normal cones]

Fig. 8. A vector in the normal cone.

[A separation result]

Lemma 13. (Separation lemma). Let \bar{T} denote the value of the time optimal control problem (P). Assume that $0<\bar{T}<\infty$. Then, there exists $\bar{q} \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\langle\bar{q}, z\rangle \leq\langle\bar{q}, y\rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}) .
$$

Corollary 14. For any optimal control \bar{u}, we have $\bar{q} \in N_{C}(y[\bar{u}](\bar{T}))$.
Proof of the corollary. Take $y=y[\bar{u}](\bar{T})$ in the separation lemma
[A separation result]

Fig. 9. Illustration of the separation lemma.
[A separation result] Proof of the separation lemma.

- Let $T_{k} \uparrow \bar{T}$. For all $k \in \mathbb{N}, \mathcal{R}\left(T_{k}\right) \cap C=\emptyset$.
- The set C is convex and closed, $\mathcal{R}\left(T_{k}\right)$ is compact and convex (by Lemma 5 and Lemma 8).
- By the Hahn-Banach Lemma, there exists q_{k} such that $\left\|q_{k}\right\|=1$ and

$$
\begin{equation*}
\left\langle q_{k}, z\right\rangle \leq\left\langle q_{k}, y\right\rangle, \quad \forall z \in C, \forall y \in \mathcal{R}\left(T_{k}\right) \tag{3}
\end{equation*}
$$

Extracting a subsequence if necessary, we assume that $q_{k} \rightarrow \bar{q}$ for some $\bar{q} \in \mathbb{R}^{n}$ with $\|\bar{q}\|=1$.
[A separation result] We next show that \bar{q} separates C and $\mathcal{R}(\bar{T})$.

- Let $z \in C$ and let $y \in \mathcal{R}(\bar{T})$.

Let $u \in L^{\infty}(0, T ; U)$ be such that $y[u](\bar{T})=y$.
Set $y_{k}=y[u]\left(T_{k}\right) \in \mathcal{R}\left(T_{k}\right)$.

- Inequality (3) yields:

$$
\left\langle q_{k}, z\right\rangle \leq\left\langle q_{k}, y_{k}\right\rangle, \quad \forall k \in \mathbb{N}
$$

- We pass to the limit and obtain

$$
\langle\bar{q}, z\rangle \leq\langle\bar{q}, y\rangle
$$

3.2 An auxiliary problem

[An auxiliary problem] Let $T>0$, let $y_{0} \in \mathbb{R}^{n}$, and let $q \in \mathbb{R}^{n}$ be fixed.
Consider the following auxiliary optimal control problem:

$$
\inf _{\substack{y \in W^{1, \infty}\left(0, T ; \mathbb{R}^{n}\right) \\
u \in L^{\infty}(0, T ; U)}}\langle q, y(T)\rangle, \quad \text { s.t.: }\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+B u(t) \\
y(0)=y_{0}, \\
u(t) \in U .
\end{array}\right.
$$

$\left(P_{\text {aux }}[q, T]\right)$
Remark: Let $(\bar{u}, \bar{y}, \bar{T})$ be a solution to the timeoptimal problem. Let \bar{q} be as in the separation lemma. Then (\bar{u}, \bar{y}) is a solution to $P_{\mathrm{aux}}[q, T]$, with $(q, T)=$ (\bar{q}, \bar{T}).
[Pre-Hamiltonian and adjoint equation] Define the pre-Hamiltonian:
$H:(u, y, p) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto\langle p, A y+B u\rangle \in \mathbb{R}$.
Note that

$$
H(u, y, p)=\left\langle A^{\top} p, y\right\rangle+\left\langle B^{\top} p, u\right\rangle
$$

Thus,

$$
\nabla_{y} H(u, y, p)=A^{\top} p \quad \text { and } \quad \nabla_{u} H(u, y, p)=B^{\top} p
$$

Let us define p as the solution to the adjoint equation (also called costate equation):

$$
\left\{\begin{align*}
p(T) & =q \tag{4}\\
-\dot{p}(t) & =A^{\top} p(t)=\nabla_{y} H(p(t)) .
\end{align*}\right.
$$

[Pontryagin's principle]

Theorem 15. (Pontryagin's minimum principle). Let (\bar{y}, \bar{u}) be such that $\bar{y}=y[\bar{u}]$.
Then (\bar{y}, \bar{u}) is a solution to ($\left.P_{\text {aux }}[q, T]\right)$ if and only if

$$
\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t)), \quad \text { for a.e. } t \in(0, T) .
$$

Remark:

$$
\underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t))=\underset{v \in U}{\operatorname{argmin}}\left\langle B^{\top} p(t), v\right\rangle .
$$

[Proof of Pontryagin's principle] " \Longleftarrow " Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle.
Let (y, u) be such that $y=y[u]$. Then

$$
\begin{aligned}
\langle q, & y(T)-\bar{y}(T)\rangle \\
= & \langle p(T), y(T)-\bar{y}(T)\rangle-\langle p(0), \underbrace{y(0)-\bar{y}(0)}_{=y_{0}-y_{0}=0}\rangle \\
= & \int_{0}^{T} \frac{d}{d t}\langle p(t), y(t)-\bar{y}(t)\rangle \mathrm{d} t \\
= & \int_{0}^{T}\langle\dot{p}(t), y(t)-\bar{y}(t)\rangle+\int_{0}^{T}\langle p(t), \dot{y}(t)-\dot{\bar{y}}(t)\rangle \mathrm{d} t \\
= & \int_{0}^{T}\langle-p(t), A y(t)-A \bar{y}(t)\rangle \mathrm{d} t \\
& +\int_{0}^{T}\langle p(t), A y(t)+B u(t)-A \bar{y}(t)-B \bar{u}(t)\rangle \mathrm{d} t \\
= & \int_{0}^{T}\left\langle B^{\top} p(t), u(t)-\bar{u}(t)\right\rangle \mathrm{d} t \geq 0
\end{aligned}
$$

[Proof of Pontryagin's principle] " \Longrightarrow " Assume

 that (\bar{y}, \bar{u}) is optimal. Consider the time function$$
h: t \in[0, T] \mapsto\left\langle B^{\top} p(t), \bar{u}(t)\right\rangle \in \mathbb{R}
$$

A time t is called Lebesgue point if

$$
h(t)=\lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) \mathrm{d} s
$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue function, since $h \in$ $L^{1}(0, T)$.
Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

$$
u_{\varepsilon}(s)=\left\{\begin{array}{cl}
v & \text { if } s \in(t-\varepsilon, t+\varepsilon) \\
\bar{u}(s) & \text { otherwise }
\end{array}\right.
$$

[Proof of Pontryagin's principle] The same calculation as above leads to:

$$
\begin{aligned}
0 & \leq \frac{1}{2 \varepsilon}\left\langle q, y\left[u_{\varepsilon}\right](T)-\bar{y}(T)\right\rangle \\
& =\frac{1}{2 \varepsilon} \int_{0}^{T}\left\langle B^{\top} p(s), u_{\varepsilon}(t)-\bar{u}(s)\right\rangle \mathrm{d} s \\
& =\frac{1}{2 \varepsilon} \int_{t-\varepsilon}^{t+\varepsilon}\left\langle B^{\top} p(s), v-\bar{u}(s) \mathrm{d} s\right. \\
& \xrightarrow[\varepsilon \downarrow 0]{\longrightarrow}\left\langle B^{\top} p(t), v-\bar{u}(t)\right\rangle
\end{aligned}
$$

as was to be proved.
[Pontryagin for time-optimal problems] We come back to the time-optimal control problem (P).
Theorem 16. (Pontryagin's principle). Let $y_{0} \notin C$, assume that $\bar{T}<\infty$. Let (\bar{y}, \bar{u}) be a solution to the original minimum time problem (P).
Then, there exists $\bar{q} \in N_{C}(\bar{y}(\bar{T})), \bar{q} \neq 0$ such that

$$
\begin{equation*}
\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t))=\underset{v \in U}{\operatorname{argmin}}\left\langle B^{\top} p, v\right\rangle, \tag{5}
\end{equation*}
$$

where p is the solution to the costate equation:

$$
-\dot{p}(t)=A^{\top} p(t), \quad p(\bar{T})=\bar{q}
$$

Remark. Pontryagin's principle is only a necessary optimality condition.

[Proof]

- By Lemma 13 and by Corollary 14, there exists $\bar{q} \in N_{C}(\bar{y}(\bar{T}))$ such that

$$
\langle\bar{q}, z\rangle \leq\langle\bar{q}, y\rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T})
$$

We take $z=\bar{y}(\bar{T}) \in C$.

- It follows that (\bar{y}, \bar{u}) is a solution to the auxiliary problem $\left(P_{\text {aux }}[q, T]\right)$, with $q=\bar{q}$ and $T=\bar{T}$.
- Applying Pontryagin's principle to the auxiliary problem (Theorem 15), we obtain (5).

4. BACK TO THE LUNAR LANDING PROBLEM

[Lunar landing problem] Recall the problem:
$\inf _{\substack{T \geq 0 \\ h:[0, T] \rightarrow \mathbb{R}}} T, \begin{cases}\dot{h}(t)=v(t), & h(0)=h_{0}, h(T)=0 \\ \dot{v}(t)=u(t), & v(0)=v_{0}, v(T)=0 \\ u(t) \in[-1,1] .\end{cases}$
$h:[0, \bar{T}] \rightarrow \mathbb{R} \quad(u(t) \in[-1,1]$.
$v:[0, T] \rightarrow \mathbb{R}$
$u:[0, T] \rightarrow \mathbb{R}$
The dynamics writes:

$$
\binom{\dot{h}(t)}{\dot{v}(t)}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{h(t)}{v(t)}+\binom{0}{1} u(t) .
$$

The lunar landing problem is a special case of (P), with

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad B=\binom{0}{1}, \quad C=\{0\} .
$$

[Lunar landing problem] We apply Pontryagin's principle. Let T be the optimal time.

- Costate equation (4) reads:

$$
-\binom{\dot{p}_{h}(t)}{\dot{p}_{v}(t)}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{p_{h}(t)}{p_{v}(t)}=\binom{0}{p_{h}(t)} .
$$

- Terminal condition: $\quad\left(p_{h}(T), p_{v}(T)\right) \in$ $N_{C}(\bar{h}(T), \bar{v}(T))=\mathbb{R}^{2}$ does not bring any information!
- Analytic resolution:

$$
p_{h}(t)=p_{h}(T), \quad \dot{p}_{v}(t)=-p_{h}(t)=-p_{h}(T)
$$

and thus

$$
p_{v}(t)=p_{v}(T)+p_{h}(T)(T-t)
$$

[Lunar landing problem]

- The minimization condition reads:

$$
\bar{u}(t) \in \underset{v \in[-1,1]}{\operatorname{argmin}}\binom{0}{1}^{\top}\binom{p_{h}(t)}{p_{v}(t)} v=\underset{v \in[-1,1]}{\operatorname{argmin}} p_{v}(t) v .
$$

It follows that

$$
\left\{\begin{array}{ll}
\bar{u}(t)=-1 & \text { if } p_{v}(t)>0 \\
\bar{u}(t)=1 & \text { if } p_{v}(t)<0
\end{array} \text { for a.e. } t \in[0, T] .\right.
$$

[Lunar landing problem]

We now prove the original conjecture: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1,1\}$.

- Case 1: $p_{h}(T)=0$. Then $p_{v}(T) \neq 0$. Therefore - either $p_{v}(t)=p_{v}(T)<0 \Longrightarrow \bar{u}(t)=1$ - or $p_{v}(t)=p_{v}(T)>0 \Longrightarrow \bar{u}(t)=-1$.
- Case 2: $p_{h}(T) \neq 0$. Then the map $t \mapsto p_{v}(T)+$ $p_{h}(T)(T-t)$ vanishes at exactly one point, say τ.
- If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1 .
- If $\tau \in(0, T)$, then there is a switch.
[A summary] Given a linear time-optimal control problem, the following methodology can be followed to analyze it:
(1) Put the state equation in the form $\dot{y}=A y+B u$. Check the assumptions state at the beginning of Section 2.
(2) Existence of a solution: verify the applicability of Theorem 10.
(3) Derive optimality conditions with Theorem 15.
(4) Deduce structural properties of optimal controls and trajectories.
(5) Transform the problem into a geometric problem.
(6) Solve it!

