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[Objectives]
• Goal: investigating linear-quadratic optimal con-

trol problems and their associated linear opti-
mality system.
• Issues: existence of a solution, optimality con-

ditions, connexion with the Riccati equation (a
non-linear ODE which yields a feedback law).
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• U. Boscain and Y. Chitour. Introduction à
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automatic control (Chapter 8). Available on U.
Boscain’s webpage.

1. EXISTENCE OF A SOLUTION

[Linear quadratic optimal control] Consider the
following LQ optimal control problem:

inf
1

2

∫ T

0

(
〈y(t),Wy(t)〉+ ‖u(t)‖2

)
dt +

1

2
〈y(T ),Ky(T )〉

st:

{
ẏ(t) =Ay(t) + Bu(t)

y(0) =y0.

(P (y0))
In the above minimization problem, y ∈ H1(0, T ;Rn) and

u ∈ L2(0, T ;Rm).
Data and assumptions:

• Time horizon: T > 0.
• Dynamics coefficients: A ∈ Rn×n, B ∈ Rn×m

• Cost coefficients: W ∈ Rn×n and K ∈ Rn×n, both
assumed symmetric positive semi-definite.

The initial condition y0 ∈ Rn is seen as a parameter of the
problem.

[The generic constant M ]
Convention.
All constants M appearing in forthcoming lemmas
will depend on A, B, W , K, and T only. They will
not depend on y0.
We use the same name for (a priori) independent
constants. This is acceptable in so far as all state-
ments remain true if the value of M is increased.

[The Sobolev space H1(0, T ;Rm)] The space
H1(0, T ;Rn) is defined as follows:

H1(0, T ;Rn) =
{
y ∈ L2(0, T ;Rn) | ẏ ∈ L2(0, T ;Rn)

}
where ẏ denotes the weak derivative of y. It is a
Hilbert space, equipped with the scalar product:

〈y1, y2〉 =

∫ T

0

〈y1(t), y2(t)〉dt+

∫ T

0

〈ẏ1(t), ẏ2(t)〉dt

and the norm

‖y‖H1(0,T ;Rn) =
(
‖y‖2L2(0,T ;Rn) + ‖ẏ‖2L2(0,T ;Rn)

)1/2

.

Lemma 1. The spaceH1(0, T ;Rm) is contained in the
set of continuous functions from [0, T ] to Rn. More-
over, all usual calculus rules are valid (in particular,
integration by parts).

[State equation] Given u ∈ L2(0, T ;Rm) and y0 ∈
Rn, let y[u, y0] ∈ H1(0, T ;Rn) denote the solution to
the state equation

ẏ(t) = Ay(t) +Bu(t), y(0) = y0.

Lemma 2. The map (u, y0) ∈ L2(0, T ;Rm) × Rn 7→
y[u, y0] ∈ H1(0, T ;Rn) is linear. There exists M > 0
such that for all u ∈ L2(0, T ;Rm) and for all y0 ∈ Rn,

‖y[u, y0]‖L∞(0,T ;Rn) ≤ M
(
‖y0‖+ ‖u‖L2(0,T ;Rn)

)
,

‖y[u, y0]‖H1(0,T ;Rn) ≤ M
(
‖y0‖+ ‖u‖L2(0,T ;Rn)

)
.

Proof. A direct application of Duhamel’s formula and
Cauchy-Schwarz inequality.

[Reduced problem] Let J : L2(0, T ;Rm) → R be
defined by

J(u) = J1(u) + J2(u) + J3(u),

where

J1(u) =
1

2

∫ T

0

〈y[u, y0](t),Wy[u, y0](t)〉dt

J2(u) =
1

2

∫ T

0

‖u(t)‖2 dt

J3(u) =
1

2
〈y[u, y0](T ),Ky[u, y0](T )〉.

Consider the reduced problem, equivalent to
(P (y0)),

inf
u∈L2(0,T ;Rm)

J(u). (P ′(y0))



[Weak lower semi-continuity]

Definition 3. A map F : L2(0, T ;Rm) → R is said to
be weakly lower semi-continuous (resp. weakly
continuous) if for any weakly convergent sequence
(uk)k∈N with weak limit ū, it holds

F (ū) ≤ lim inf
k∈N

F (uk)
(

resp. F (ū) = lim
k∈N

F (uk)
)
.

Lemma 4. The map J is strictly convex and
weakly lower semi-continuous.

Proof.
• J1, J2, and J3 are convex, J2 is strictly convex
• J1 and J3 are weakly continuous, J2 is weakly

lower semi-continuous

[Regularity of J ]
Let (uk)k∈N be a sequence in L2(0, T ;Rm), let ū ∈
L2(0, T ;Rm). Assume that uk ⇀ ū. Let yk = y[uk, y0]
and ȳ = y[ū, y0]. Then,
• (uk)k∈N is bounded in L2(0, T ;Rm)
• by Lemma 2, yk is bounded in L∞(0, T ;Rn).

With the help of Duhamel’s formula, we obtain that

y[uk, y0](t)→ y[ū, y0](t), for all t ∈ [0, T ].

Step 1: This directly implies that

J3(uk)=
1

2
〈yk(T ),Kyk(T )〉 → 1

2
〈ȳ(T ),Kȳ(T )〉=J3(ū).

Thus J3 is weakly continuous.

[Regularity of J ] Step 2: By the dominated conver-
gence theorem,

J1(uk) =
1

2

∫ T

0

〈yk(t),Wyk(t)〉dt → = J1(ū).

Step 3: Finally, we have:

J2(uk)− J2(ū) =
1

2

∫ T

0

‖uk(t)‖2 − ‖ū(t)‖2 dt

=

∫ T

0

〈ū(t), uk(t)− ū(t)〉dt︸ ︷︷ ︸
→0

+
1

2

∫ T

0

‖uk(t)− ū(t)‖2 dt︸ ︷︷ ︸
≥0

.

Therefore, lim inf J2(uk)− J2(ū) ≥ 0 and J2 is weakly
lower semi-continuous.

[Existence result]

Lemma 5. For all y0 ∈ Rn, the problem (P ′(y0))
has a unique solution ū[y0]. Moreover, there exists
a constant M , independent of y0, such that

‖ū[y0]‖L2(0,T ;Rm) ≤M‖y0‖.
Proof. Let (uk)k∈N be a minimizing sequence.
W.l.o.g.,
1

2
‖uk‖2L2(0,T ) = J2(uk) ≤ J(uk) ≤ J(0) ≤ 1

2

(
M‖y0‖

)2
.

Extracting a subsequence, we can assume that
uk ⇀ ū, for some ū ∈ L2(0, T ;Rm). We have
‖ū‖L2(0,T ;Rm) ≤M‖y0‖, moreover

J(ū) ≤ lim inf J(uk) = inf
u∈L2(0,T ;Rm)

J(u).

Thus, ū is optimal. Strict convexity of J =⇒ unique-
ness.

2. PONTRYAGIN’S PRINCIPLE

[Fréchet differentiability]

Definition 6. The map J is said to be Fréchet dif-
ferentiable if for any u ∈ L2(0, T ;Rm), there exists
a continuous linear form DJ(u) : L2(0, T ;Rm)→ R
such that

|J(u+ v)− J(u)−DJ(u)v|
‖v‖L2(0,T ;Rm)

−→
‖v‖L2↓0

0.

Remark. A sufficient condition for Fréchet differentia-
bility is to have

|J(u+ v)− J(u)−DJ(u)v| ≤M‖v‖2L2(0,T ;Rm),

for all v and for some M independent of v.

[Fréchet differentiability]

Lemma 7. The map J is Fréchet differentiable. Let
ū and v ∈ L2(0, T ;Rm). Let ȳ = y[ū, y0] and let
z ∈ y[v, 0]. Omitting the time variable,

DJ(ū)v =

∫ T

0

〈Wȳ, z〉+ 〈ū, v〉dt+ 〈Kȳ(T ), z(T )〉.

Proof. First, y[u+ v, y0]− y[u, y0] = y[v, 0] = z.
We have

J1(ū+ v)−J1(ū) =

∫ T

0

〈Wȳ, z〉dt︸ ︷︷ ︸
=DJ1(ū)v

+
1

2

∫ T

0

〈z,Wz〉dt︸ ︷︷ ︸
=O
(
‖z‖2L∞(0,T ;Rn)

)
=O
(
‖v‖2

L2(0,T ;Rm)

)
.

[Fréchet differentiability] Similarly, we have

J2(ū+ v)− J2(ū) =

∫ T

0

〈ū, v〉dt︸ ︷︷ ︸
=DJ2(ū)v

+
1

2
‖v‖2L2(0,T ;Rm).

and

J3(ū+ v)− J3(ū) = 〈Kȳ(T ), z(T )〉︸ ︷︷ ︸
=DJ3(ū)v

+〈z(T ),Kz(T )〉.

[Riesz representative] Pre-hamiltonian: given
(u, y, p) ∈ Rm × Rn × Rn,

H(u, y, p) =
1

2

(
〈y,Wy〉+ ‖u‖2

)
+ 〈p,Ay +Bu〉 ∈ R.

We have

∇yH(u, y, p) = Wy +A>p

∇uH(u, y, p) = u+B>p.

Lemma 8. Let ū ∈ L2(0, T ;Rm). Let ȳ = y[ū, y0]. Let
p ∈ H1(0, T ;Rn) be the solution to

−ṗ(t) = ∇yH(ū(t), ȳ(t), p(t)), p(T ) = Kȳ(T ).

Then,

DJ(ū)v =
〈
∇uH(ū(·), ȳ(·), p(·)), v

〉
L2(0,T ;Rm)

.
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[Riesz representative] Proof. We have

〈Kȳ(T ), z(T )〉 =〈p(T ), z(T )〉 − 〈p(0), z(0)〉

=

∫ T

0

d

dt
〈p(t), z(t)〉dt

=

∫ T

0

〈ṗ(t), z(t)〉+ 〈p(t), ż(t)〉dt

=

∫ T

0

〈−A>p−Wȳ, z〉+ 〈p,Az +Bv〉dt

=

∫ T

0

−〈Wȳ, z〉+ 〈B>p, v〉dt.

Combined with Lemma 7 and the expression of
∇uH(u, y, p), we obtain the result.

[Pontryagin’s principle]

Theorem 9. Let ū ∈ L2(0, T ;Rm). Let ȳ = y[ū, y0].
Let p̄ be defined by the adjoint equation

− ˙̄p(t) = ∇yH(ū(t), ȳ(t), p̄(t)) = A>p̄(t) +Wȳ(t),

p̄(T ) = Kȳ(T ).

Then, ū is a solution to (P ′(y0)) if and only if

ū(t) +B>p̄(t) = ∇uH(ū(t), ȳ(t), p̄(t)) = 0,

for a.e. t ∈ (0, T ).

Proof. Since J is convex, ū is optimal if and only if
DJ(ū) = 0.
Remark. By convexity of H(·, ȳ(t), p̄(t)),

∇uH(ū(t), ȳ(t), p̄(t)) = 0

⇐⇒ ū(t) ∈ argmin
v∈Rm

H(v, ȳ(t), p̄(t)).

[Estimate of p]

Lemma 10. Let ū denote the solution to (P ′(y0)), let
ȳ = y[ū, y0], and let p̄ be the associated costate. Then,
there exists a constant M , independent of y0, such
that

‖p̄‖L∞(0,T ;Rm) ≤M‖y0‖ and ‖p̄‖H1(0,T ;Rm) ≤M‖y0‖.
Proof. We know that

‖ū‖L2(0,T ;Rm) ≤M‖y0‖ and ‖ȳ‖L∞(0,T ;Rm) ≤M‖y0‖.
Denote p̃(t) = p̄(T − t). Then p̃ is solution to

p̃(t) = A>p̃(t) +Wȳ(T − t), p̃(0) = Kȳ(T ).

Duhamel =⇒ bounds of p̃ in L∞(0, T ;Rn) and
H1(0, T ;Rn).

[A last formula]

Lemma 11. Let ū = ū[y0], let ȳ = y[ū, y0], and let p̄
be the associated costate. Then,

V (y0) :=
(

inf
u∈L2(0,T ;Rm)

J(u)
)

= J(ū) =
1

2
〈p̄(0), y0〉.

Proof. We have

2J3(ū) = 〈ȳ(T ),Kȳ(T )〉 = 〈p̄(T ), ȳ(T )〉

=

∫ T

0

d

dt
〈p̄(t), ȳ(t)〉dt+ 〈p̄(0), y0〉dt.

[A last formula] We further have∫ T

0

d

dt
〈p̄(t), ȳ(t)〉dt =

∫ T

0

〈ṗ, ȳ〉+ 〈p̄, ˙̄y〉dt

=

∫ T

0

〈−A>p̄−Wȳ, ȳ〉+ 〈p̄, Aȳ +Bū〉dt

=

∫ T

0

−〈Wȳ, ȳ〉+ 〈B>p̄, ū〉dt

=

∫ T

0

−〈Wȳ, ȳ〉 − ‖ū‖2 dt

=−2J1(ū)− 2J2(ū).

Combining the last two equalities, we obtain

J(ū) = J1(ū) + J2(ū) + J3(ū) =
1

2
〈p̄(0), y0〉.

3. RICCATI EQUATION

[Linear optimality system]
The numerical resolution of (P ′(y0)) boils down to
the numerical resolution of the following linear op-
timality system:

ẏ(t)−Ay(t)−Bu(t) =0 State equation

ṗ(t) + A>p(t) + Wy(t) =0 Adjoint equation

u(t) + B>p(t) =0 Minimality condition

p(T )−Ky(T ) =0 Initial condition

y(0) =y0. Terminal condition

More precisely: Theorem 17 ensures that the optimal-
ity system has a unique solution, which is (ȳ, ū, p̄).

[Linear optimality system] After elimination of
u = −B>p, we obtain the coupled system:

ẏ(t)−Ay(t) + BB>p(t) =0

ṗ(t) + A>p(t) + Wy(t) =0

p(T )−Ky(T ) =0

y(0) =y0.

(OS(y0))

[Key idea] A key idea is to decouple the linear
system, by constructing a map

E : [0, T ]→ Rn×n,
independent of y0, such that for any solution (y, p) to
(OS(y0)), we have

p(t) = −E(t)y(t).

Roadmap. Once E has been constructed, we have:

ẏ = Ay +Bu = Ay −BB>p = (A+BB>E)y

together we the initial condition y(0) = y0. Thus,
y can be computed by solving a linear differential
system. Then, p and u are obtained via

p = −Ey and u = −B>p.

3



[Derivation of the Riccati equation] Wanted:
p = −Ey. The terminal condition p(T ) = Ky(T )
yields

E(T ) = −K.
Next, by differentiation, we have:

ṗ = −Ėy − Eẏ,
therefore,

−Ėy = ṗ+ Eẏ

=
[
−A>p−Wy

]
+
[
E(Ay −BB>p)

]
=
[
A>Ey −Wy

]
+
[
E(Ay +BB>Ey)

]
=
(
A>E + EA−W + EBB>E

)
y.

[Riccati equation]

Theorem 12. There exists a unique smooth solution
to the following matrix differential equation, called
Riccati equation:{
−Ė(t) =A>E(t) + E(t)A−W + E(t)BB>E(t)

E(T ) =−K.
(RE)

Moreover, for all y0 ∈ Rn, the optimal trajectory ȳ
for (P ′(y0)) is the solution to the closed-loop system

ẏ(t) = (A+BB>E(t))y(t), y(0) = y0.

It also holds:

p̄(t) = −E(t)ȳ(t) and ū[y0](t) = B>E(t)ȳ(t)︸ ︷︷ ︸
Feedback law!

.

(1)

[Riccati equation] Proof. Step 1. The only difficulty
is to prove that (RE) is well-posed. Once we have
a solution E, the closed-loop system and relation
(1) define a triplet (u, y, p) which satisfies the linear
optimality system:
• (y, u) satisfies the state equation
• u satisfies the minimality condition
• p satisfies the adjoint equation:

−ṗ = Ėy + Eẏ = ... = A>p+Wy.

Thus (u, y, p) = (ū, ȳ, p̄).

[Riccati equation] Step 2. The Riccati equation has
the abstract form:

−Ė(t) = F(E(t)), E(T ) = −K.
The map F : Rn×n → Rn×n is polynomial, thus lo-
cally Lipschitz continuous (but not globally Lips-
chitz continuous!).
By the Picard-Lindelöf theorem, there exists
τ ∈ [−∞, T ) such that (RE) has a unique solution
on (τ, T ]. If τ ∈ R, then

lim
t↓τ
‖E(t)‖ =∞.

[Riccati equation] Step 3. Assume that τ ≥ 0. Let
s ∈ (τ, T ]. Let ys ∈ Rn, consider

inf
1

2

∫ T

s

(
〈y(t),Wy(t)〉+ ‖u(t)‖2

)
dt +

1

2
〈y(T ),Ky(T )〉

s.t.:

{
ẏ(t) =Ay(t) + Bu(t)

y(s) =ys.

Adapting the theory developed previously, we prove
the existence of a unique solution (ū, ȳ) with associ-
ated costate p, such that

p(s) = −E(s)ys and ‖p(s)‖ ≤M‖ys‖. (2)

Here the constant M is independent of ys, (ū, ȳ) and
p, it can also be shown to be independent of s.

[Riccati equation] Conclusion. Let s > 0 be such
that

‖E(s)‖ ≥M + 2,

where ‖ · ‖ denotes the operator norm and where M
is the constant appearing in (2).
Let ys ∈ Rn\{0} be such that

‖E(s)ys‖ ≥ (M + 1)‖ys‖.
Therefore,

‖p(s)‖ ≥ (M + 1)‖ys‖ > M‖ys‖.
A contradiction.

[Additional properties]

Lemma 13. (1) For all y0 ∈ Rn,

V (y0) :=
(

inf
u∈L2(0,T ;Rm)

J(u)
)

= −1

2
〈y0, E(0)y0〉.

(2) For all t ∈ [0, T ], E(t) is symmetric negative
semi-definite.

(3) For all y0 ∈ Rn, ∇V (y0) = p̄(0).

Proof.
(1) We have V (y0) = 1

2 〈p̄(0), y0〉 = − 1
2 〈y0, E(0)y0〉.

(2) Verify that E> is the solution (RE). Moreover,
V (y0) ≥ 0.

(3) We have ∇V (y0) = −E(0)y0 = p̄(0).

4. SHOOTING METHOD

[Optimality system] Recall the optimality sys-
tem to be solved:{

ẏ =Ay −BB>p, y(0) =y0,

ṗ =−A>p−Wy, p(T ) =Ky(T ).

Equivalently:(
ẏ
ṗ

)
=

(
A −BB>
W A>

)
︸ ︷︷ ︸

=:R

(
y
p

)
, y(0) = y0, p(T ) = Ky(T ).

The optimality system is a two-point boundary
value problem.
If p(0) was known, then the differential system could
be solved numerically.
Shooting method: find p(0) such that p(T ) =
Ky(T ).

4



[Shooting] Setting

(
X1 X2

X3 X4

)
= eTR, we have the

equivalent formulation:(
y(T )
p(T )

)
= eTR

(
y(0)
p(0)

)
, y(0) = y0, p(T ) = Ky(T ).

The optimality system reduces to the shooting
equation:

X3y0 +X4p(0) = K(X1y0 +X2p(0))

⇐⇒ p(0) = (X4 −KX2)−1
(
KX1 −X3

)
y0.
(SE)

[Shooting algorithm]
In the LQ case, the shooting algorithm consists then
in the following steps:
• Compute eTR, by solving the matrix differen-

tial equation

Ẋ(t) = RX(t), X(0) = I,

in R2n×2n.
• Solve the shooting equation (SE) and find p0.
• Solve the differential equation(

ẏ
ṗ

)
= R

(
y
p

)
,

(
y(0)
p(0)

)
=

(
y0

p0

)
.

• The optimal control is given by u = −B>p.
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