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[Objectives]

e Goal: investigating linear-quadratic optimal con-
trol problems and their associated linear opti-
mality system.

e [ssues: existence of a solution, optimality con-
ditions, connexion with the Riccati equation (a
non-linear ODE which yields a feedback law).
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e U. Boscain and Y. Chitour. Introduction a
Pautomatique (Chapitre 5) / Introduction to
automatic control (Chapter 8). Available on U.
Boscain’s webpage.

[The Sobolev space H!'(0,T;R™)] The space
H'Y(0,T;R") is defined as follows:

H'(0,75R") = {y € L2(0,T;R") | € L*(0, T;R™) |

where ¢ denotes the weak derivative of y. It is a
Hilbert space, equipped with the scalar product:

T T
(1, 2) = / (1), ya(£)) dt + / (G (). 9 (0))

and the norm

. /
Wl 0.y = (11320280 + 191320, ) -

Lemma 1. The space H' (0, T; R™) is contained in the
set of continuous functions from [0, 7] to R™. More-
over, all usual calculus rules are valid (in particular,
integration by parts).

1. EXISTENCE OF A SOLUTION

[Linear quadratic optimal control] Consider the
following LQ optimal control problem:

me L [ (< (1), W (t>>+||u<t>u2) dt + 2y(m), Ky(T))
D) ; y(t), Yy 3 Y , Y

[0 =4y + Bu(
y(0) =wo-
(P(0))
In the above minimization problem, y € H'(0,T;R") and
u € L2(0,T;R™).
Data and assumptions:

e Time horizon: T' > 0.

e Dynamics coefficients: A € R"*" B € R"*™

o Cost coefficients: W € R™*™ and K € R"X", both
assumed symmetric positive semi-definite.

The initial condition yg € R™ is seen as a parameter of the
problem.

[State equation] Given u € L?(0,T;R™) and yo €
R™, let y[u,yo] € H'(0,T;R™) denote the solution to
the state equation
y(t) = Ay(t) + Bu(t), y(0) = yo.
Lemma 2. The map (u,y0) € L*(0,T;R™) x R"
y[u, yo] € H(0,T;R™) is linear. There exists M > 0
such that for all u € L?(0,7;R™) and for all yo € R",
lylw, yolll oo 0,7y < M (lwoll + llullL20,7:m)),
1y[w, yolll e 0, mmmy < M (llyoll + [lull 22 0,7mm))-
Proof. A direct application of Duhamel’s formula and
Cauchy-Schwarz inequality.

[The generic constant M|

Convention.

All constants M appearing in forthcoming lemmas
will depend on A, B, W, K, and T only. They will
not depend on yj.

We use the same name for (a priori) independent
constants. This is acceptable in so far as all state-
ments remain true if the value of M is increased.

[Reduced problem] Let J: L?(0,T;R™) — R be
defined by
J(u) = Ji(u) + Ja(u) + J3(u),
where
1

T
B = g [ Gl nl 0. Wyl o)

T
B = 5 [ o) @

1
J3(u) = 5 (lu, 9ol (1), Kylu, yo](T))-
Consider the reduced problem, equivalent to

(P(¥0)),
inf —J(u). (P'(y0))

w€L?(0,T;R™)




[Weak lower semi-continuity]

Definition 3. A map F: L?(0,T;R™) — R is said to
be weakly lower semi-continuous (resp. weakly
continuous) if for any weakly convergent sequence
(uk)ken with weak limit @, it holds

F(a) < hrknelﬁIllfF(uk) (resp. F(a) = llglenﬁllF(uk) )

Lemma 4. The map J is strictly convex and
weakly lower semi-continuous.

Proof.
e Ji, Jo, and J3 are convex, Js is strictly convex
e J; and J3 are weakly continuous, J; is weakly
lower semi-continuous

2. PONTRYAGIN’S PRINCIPLE

[Regularity of J]
Let (ug)ren be a sequence in L2(0,T;R™), let u €
L2(0,T;R™). Assume that up — . Let yi, = y[us, yo)
and § = y[u, yo]. Then,

o (ug)ken is bounded in L2(0,T;R™)

e by Lemma 2, y;, is bounded in L>°(0,T;R™).
With the help of Duhamel’s formula, we obtain that
Ylur, yol (t) = yla, yo] (t), for all t € [0, T].

Step 1: This directly implies that

J5(ur) = = (i (T), Kyi(T)) =~ (@(T), K(T)) = Js (@),

2 2
Thus J3 is weakly continuous.

[Fréchet differentiability]
Definition 6. The map J is said to be Fréchet dif-
ferentiable if for any u € L%(0,T;R™), there exists
a continuous linear form DJ(u): L?(0,T;R™) — R
such that
|J(u+v) = J(u) — DJ(u)v|
ol 220, 7mm) o]l 240
Remark. A sufficient condition for Fréchet differentia-
bility is to have
| T (u+v) = J(u) = DJ (u)o| < M|[v][Z2(0,7m)s

for all v and for some M independent of v.

[Regularity of J] Step 2: By the dominated conver-
gence theorem,

T
B =5 [ 0. W) dt = 7@,

Step 3: Finally, we have:

T
Ta(w) = 1) = 5 [ I = (o) at

T ) 1 (T o
= [ (et = ) g [ ) — (o) ar.

—0 >0

Therefore, liminf Ja(uy) — J2(@) > 0 and Js is weakly
lower semi-continuous.

[Fréchet differentiability]

Lemma 7. The map J is Fréchet differentiable. Let
@ and v € L?(0,T;R™). Let § = y[i,yo] and let
z € y[v, 0]. Omitting the time variable,

T
DJ(a)v:/O (W, z) + {a,v)dt + (Kg(T), 2(T)).

Proof. First, ylu+ v, yo] — ylu, yo] = ylv,0] = 2.
‘We have

T T
Jl(ﬂ+v)—J1(ﬂ):/O<Wy,z)dt+ %/O (z, Wz)dt .

=DJ; (ﬂ)’[}

=(9(HZH%OO(0,T;R"))

=0 (H'U”iZ(o,T;]Rm))

[Existence result]

Lemma 5. For all yo € R™, the problem (P’(yo))

has a unique solution u[yp]. Moreover, there exists

a constant M, independent of yg, such that
lalyolll 20, r:rm) < M|lyol|-

Proof. Let (ur)keny be a minimizing sequence.
W.lo.g.,

1 1 2
§||Uk||2L2(o,T) = Jo(ur) < J(ux) < J(0) < §(M||y0H) :
Extracting a subsequence, we can assume that

up, — 4, for some u € L*0,T;R™). We have

@l 20, 75mmy < M|yol|, moreover

J(@) < liminf J = inf J(u).
(2) < liminf J(ug) uELQ%g,T;Rm) (u)
Thus, @ is optimal. Strict convexity of J = unique-
ness.

[Fréchet differentiability] Similarly, we have

T
_ _ _ 1
Ta(a+0) = Jofa) = [ (@0} &t 5 ol o imm
0

=DJs(u)v

and

J3(t+v) = Js(u) = (Ky(T), 2(T)) +(2(T), Kz(T)).
=DJs(a)v

[Riesz representative] Pre-hamiltonian: given
(u7y7p) E Rm X R’"‘ >< Rn?
1
H(u,y,p) = 5 ({9; Wy) + |[ull*) + (p, Ay + Bu) € R.
We have
VoH(u,y,p) = u+ B'p.
Lemma 8. Let w € L?(0,T;R™). Let § = ylii, yo]. Let
p € H*(0,T;R™) be the solution to
—p(t) =V, H(u(t), y(t),p(t)), p(T) = Ky(T).
Then,
DI (@) = (VuH@(), 5(),p(),v) .

L2(0,T;R™)




[Riesz representative] Proof. We have
(Ky(T), (1)) =(p(T), 2(T)) — (p(0),2(0))

T
=/ (—ATp—Wy,z) + (p, Az + Bv) dt
0

- /OT — (W, 2) + (B p,v)dt.

Combined with Lemma 7 and the expression of
VuH (u,y,p), we obtain the result.

[Pontryagin’s principle]

Theorem 9. Let u € L?(0,T;R™). Let § = y[i, yo-

Let p be defined by the adjoint equation
—p(t) = VyH(u(t), g(t), p(t)) = ATp(t) + Wi(t),
B(T) = Ky(T).

Then, @ is a solution to (P'(y)) if and only if

ﬂ(t) + BTﬁ(t) = qu(ﬂ(t)a g(t),ﬁ(t)) =0,
for a.e. t € (0,7T).
Proof. Since J is convex, @ is optimal if and only if

DJ(u) =
Remark. By convexity of H(-,4(t),p(t)),
), B(t))-

Vo H (u(t), y(t),p ())(

< u(t) € argmin H
vER™

P
0
y(t

[A last formula] We further have
T a r .
[ o= [ G+ o
0 0
T
= [ AT Wig) + (5 Ay + B
OT
= [ ~vp) + 7m0
OT
— [ ~wa.g) - alar
0

=—2J1(a) — 2J5(q).
Combining the last two equalities, we obtain

T(@) = Ji(@) + Ja(8) + Jy(@) = 3 (p(0), o).

3. RICCATI EQUATION

[Estimate of p]

Lemma 10. Let @ denote the solution to (P’(yo)), let

7 = y|u, yo], and let p be the associated costate. Then,

there exists a constant M, independent of yg, such

that

[Pl o= 0,7y < Mlyoll and [Pl 10, 7mm) < Myol-

Proof. We know that

l@ll2(0,rsrm) < Mlyoll and |7l Lo 0,7;rm) < M|[yol-

Denote p(t) = p(T —
p(t) = ATp(t) + Wy(T —t), 5(0) = Ky(T).

Duhamel = bounds of p in L*(0,7;R™) and

HY(0, T;R™).

t). Then p is solution to

[Linear optimality system]

The numerical resolution of (P’(y)) boils down to
the numerical resolution of the following linear op-
timality system:

y(t) — Ay(t) — Bu(t) =0 State equation
p(t) + ATp(t) + Wy(t) =0 Adjoint equation
u(t) + BT p(t) =0 Minimality condition
p(T) — Ky(T) =0 Initial condition
y(0) =yo Terminal condition

More precisely: Theorem 17 ensures that the optimal-
ity system has a unique solution, which is (g, @, p).

[A last formula]

Lemma 11. Let @ = alyo], let § = y[a, yo], and let p
be the associated costate. Then,

Vigo):= (it Jw)) = Ja) = 3 (p(0), o)

uw€L?(0,T;R™)
Proof. We have
2J3(w) = (y(T), Ky(T)) = (p(T), y(T))

/ dt (t)) dt + (p(0), yo) dt.

[Linear optimality system] After elimination of
u = —BTp, we obtain the coupled system:

§(t) — Ay(t) + BB p(t) =0
p(t) + AT p(t ()+Wy(

)=
p(T) — Ky(T) =
y(0) =

(OS(y0))

[Key idea] A key idea is to decouple the linear
system, by constructing a map

E: [0,T] —» R™",
independent of yg, such that for any solution (y,p) to
(OS(yo)), we have

p(t) = —EQ@)y(t)-
Roadmap. Once E has been constructed, we have:
y=Ay+Bu=Ay— BB p=(A+ BB'E)y
together we the initial condition y(0) = yo. Thus,

y can be computed by solving a linear differential
system. Then, p and u are obtained via

p=—FEy and uw=—-B'p.




[Derivation of the Riccati equation] Wanted:
p = —FEy. The terminal condition p(T) = Ky(T)
yields
B(T) = —K.
Next, by differentiation, we have:
b =—Ey - Ej,
therefore,
~Ey=p+Ey

=[- ATp — Wy| + [E(Ay — BBTp)]

= [ATBy — Wy] + [E(Ay + BB Ey)]

= (ATE+ FEA-W + EBB'E)y.

[Riccati equation] Step 3. Assume that 7 > 0. Let
€ (7,T). Let y; € R™, consider
1 [T 1
inf 5/ ((y(t),Wy(t» + IIU(t)H2> dt + 5 (y(T), Ky(T))

y(t) = Ay(t) + Bu(t)
y(S) =Ys-

s.t.:

Adapting the theory developed previously, we prove
the existence of a unique solution (u,§) with associ-
ated costate p, such that

p(s) = —E(s)ys and |[]p(s)|| < Mllysll.  (2)

Here the constant M is independent of ys, (u,y) and
p, it can also be shown to be independent of s.

[Riccati equation]
Theorem 12. There exists a unique smooth solution
to the following matrix differential equation, called
Riccati equation:

—E(t)=ATE(t) + E(t)A—W + E(t)BB" E(t)

E(T)=-K.

(RE)

Moreover, for all yo € R, the optimal trajectory
for (P’(yo)) is the solution to the closed-loop system

§(t) = (A+BBTE®))y(t), y(0) = yo.
It also holds:
p(t) = —E@®)y(t) and ufyo](t) = B E(t)y(t).
—_———

Feedback law!
(1)

[Riccati equation] Conclusion. Let s > 0 be such
that

[E(s) =2 M +2,
where || - || denotes the operator norm and where M

is the constant appearing in (2).
Let ys € R™\{0} be such that

IE(s)ysll = (M + 1)[ys]|-
Therefore,
[p()Il = (M + 1) |ys[| > M-
A contradiction.

[Riccati equation] Proof. Step 1. The only difficulty
is to prove that (RE) is well-posed. Once we have
a solution F, the closed-loop system and relation
(1) define a triplet (u,y,p) which satisfies the linear
optimality system:

o (y,u) satisfies the state equation

e 1 satisfies the minimality condition

e p satisfies the adjoint equation:

—p=FEy+Ej=..=ATp+Wy.
Thus (u,y,p) = (4,7, D)-

[Additional properties]
Lemma 13. (1) For all yo € R,
. 1
Vi) = (,_inf J() = —5 0, BO)wo).
(2) For all t € [0,T], E(t) is symmetric negative
semi-definite.
(3) For all yo € R™, VV (yo) = p(0).
Proof.
(1) We have V(yo) = 5(p(0), 50) = —5 (0, E(0)y0)-
(2) Verify that ET is the solution (RE). Moreover,
V(yo) = 0.
(3) We have VV (yo) = —E(0)yo = p(0).

[Riccati equation] Step 2. The Riccati equation has
the abstract form:
—B(t) = F(E(t)), BE(T)=-K.

The map F: R"*™ — R™*™ ig polynomial, thus lo-
cally Lipschitz continuous (but not globally Lips-
chitz continuous!).

By the Picard-Lindelof theorem, there exists
T € [—00,T) such that (RE) has a unique solution
on (7,T]. If 7 € R, then

lim | E(t)]| = oo.
im | 5(t) | = oc

4. SHOOTING METHOD

[Optimality system] Recall the optimality sys-
tem to be solved:
{ j=Ay—BB'p,  y(0) =yo,
p=-ATp-Wy, p(T)=Ky(T).

Equivalently:

(g> - (I?/ iET) (%) , y(0) = yo, p(T) = Ky(T).
—_—

=R
The optimality system is a two-point boundary
value problem.
If p(0) was known, then the differential system could
be solved numerically.
Shooting method: find p(0) such that p(T) =
Ky(T).




[Shooting] Setting <§; §i) = eT!, we have the

equivalent formulation:
y(T) rr (y(0)
<p(T)> e <p(0) ; y(0) = vo, p(T) y(T)
The optimality system reduces to the shooting
equation:
X3yo + X4p(0) = K(X1y0 + X2p(0))
= p0) = (X4 — KX5) ' (KX1 — X3)y.
(SE)

[Shooting algorithm)]
In the LQ case, the shooting algorithm consists then
in the following steps:
e Compute "% by solving the matrix differen-
tial equation
X(t)=RX(t), X(0)=1I,
in R2n><2n.

e Solve the shooting equation (SF) and find py.
e Solve the differential equation

() =1G) ()~ ()

e The optimal control is given by u = —B T p.




