SOD 311 - Linear-quadratic optimal control problems

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- Goal: investigating linear-quadratic optimal control problems and their associated linear optimality system.
- Issues: existence of a solution, optimality conditions, connexion with the Riccati equation (a non-linear ODE which yields a feedback law).
[Bibliography] The following references are related to Lecture 2:
- E. Trélat, Contrôle optimal : théorie et applications. Version électronique, 2013. (Chapitre 3).
- E. Sontag, Mathematical Control Theory, Springer, 1998. (Chapter 8).
- U. Boscain and Y. Chitour. Introduction à l'automatique (Chapitre 5) / Introduction to automatic control (Chapter 8). Available on U. Boscain's webpage.

1. EXISTENCE OF A SOLUTION

[Linear quadratic optimal control] Consider the following LQ optimal control problem:

$$
\begin{aligned}
& \inf \frac{1}{2} \int_{0}^{T}\left(\langle y(t), W y(t)\rangle+\|u(t)\|^{2}\right) \mathrm{d} t+\frac{1}{2}\langle y(T), K y(T)\rangle \\
& \text { st: }\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+B u(t) \\
y(0)=y_{0} .
\end{array}\right.
\end{aligned}
$$

In the above minimization problem, $y \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)$ and $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$.
Data and assumptions:

- Time horizon: $T>0$.
- Dynamics coefficients: $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$
- Cost coefficients: $W \in \mathbb{R}^{n \times n}$ and $K \in \mathbb{R}^{n \times n}$, both assumed symmetric positive semi-definite.

The initial condition $y_{0} \in \mathbb{R}^{n}$ is seen as a parameter of the problem.

[The generic constant M]

Convention.
All constants M appearing in forthcoming lemmas will depend on A, B, W, K, and T only. They will not depend on y_{0}.
We use the same name for (a priori) independent constants. This is acceptable in so far as all statements remain true if the value of M is increased.
[The Sobolev space $H^{1}\left(0, T ; \mathbb{R}^{m}\right)$] The space $H^{1}\left(0, T ; \mathbb{R}^{n}\right)$ is defined as follows:
$H^{1}\left(0, T ; \mathbb{R}^{n}\right)=\left\{y \in L^{2}\left(0, T ; \mathbb{R}^{n}\right) \mid \dot{y} \in L^{2}\left(0, T ; \mathbb{R}^{n}\right)\right\}$ where \dot{y} denotes the weak derivative of y. It is a Hilbert space, equipped with the scalar product:

$$
\left\langle y_{1}, y_{2}\right\rangle=\int_{0}^{T}\left\langle y_{1}(t), y_{2}(t)\right\rangle \mathrm{d} t+\int_{0}^{T}\left\langle\dot{y}_{1}(t), \dot{y}_{2}(t)\right\rangle \mathrm{d} t
$$ and the norm

$$
\|y\|_{H^{1}\left(0, T ; \mathbb{R}^{n}\right)}=\left(\|y\|_{L^{2}\left(0, T ; \mathbb{R}^{n}\right)}^{2}+\|\dot{y}\|_{L^{2}\left(0, T ; \mathbb{R}^{n}\right)}^{2}\right)^{1 / 2}
$$

Lemma 1. The space $H^{1}\left(0, T ; \mathbb{R}^{m}\right)$ is contained in the set of continuous functions from $[0, T]$ to \mathbb{R}^{n}. Moreover, all usual calculus rules are valid (in particular, integration by parts).
[State equation] Given $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ and $y_{0} \in$ \mathbb{R}^{n}, let $y\left[u, y_{0}\right] \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)$ denote the solution to the state equation

$$
\dot{y}(t)=A y(t)+B u(t), \quad y(0)=y_{0} .
$$

Lemma 2. The map $\left(u, y_{0}\right) \in L^{2}\left(0, T ; \mathbb{R}^{m}\right) \times \mathbb{R}^{n} \mapsto$ $y\left[u, y_{0}\right] \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)$ is linear. There exists $M>0$ such that for all $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ and for all $y_{0} \in \mathbb{R}^{n}$,

$$
\left\|y\left[u, y_{0}\right]\right\|_{L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)} \leq M\left(\left\|y_{0}\right\|+\|u\|_{L^{2}\left(0, T ; \mathbb{R}^{n}\right)}\right),
$$

$$
\left\|y\left[u, y_{0}\right]\right\|_{H^{1}\left(0, T ; \mathbb{R}^{n}\right)} \leq M\left(\left\|y_{0}\right\|+\|u\|_{L^{2}\left(0, T ; \mathbb{R}^{n}\right)}\right)
$$

Proof. A direct application of Duhamel's formula and Cauchy-Schwarz inequality.
[Reduced problem] Let $J: L^{2}\left(0, T ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ be defined by

$$
J(u)=J_{1}(u)+J_{2}(u)+J_{3}(u)
$$

where

$$
\begin{aligned}
& J_{1}(u)=\frac{1}{2} \int_{0}^{T}\left\langle y\left[u, y_{0}\right](t), W y\left[u, y_{0}\right](t)\right\rangle \mathrm{d} t \\
& J_{2}(u)=\frac{1}{2} \int_{0}^{T}\|u(t)\|^{2} \mathrm{~d} t \\
& J_{3}(u)=\frac{1}{2}\left\langle y\left[u, y_{0}\right](T), K y\left[u, y_{0}\right](T)\right\rangle .
\end{aligned}
$$

Consider the reduced problem, equivalent to $\left(P\left(y_{0}\right)\right)$,

$$
\inf _{u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)} J(u) . \quad\left(P^{\prime}\left(y_{0}\right)\right)
$$

[Weak lower semi-continuity]

Definition 3. A map $F: L^{2}\left(0, T ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ is said to be weakly lower semi-continuous (resp. weakly continuous) if for any weakly convergent sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ with weak limit \bar{u}, it holds

$$
F(\bar{u}) \leq \liminf _{k \in \mathbb{N}} F\left(u_{k}\right) \quad\left(\text { resp. } F(\bar{u})=\lim _{k \in \mathbb{N}} F\left(u_{k}\right)\right)
$$

Lemma 4. The map J is strictly convex and weakly lower semi-continuous.
Proof.

- J_{1}, J_{2}, and J_{3} are convex, J_{2} is strictly convex
- J_{1} and J_{3} are weakly continuous, J_{2} is weakly lower semi-continuous

[Regularity of J]

Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a sequence in $L^{2}\left(0, T ; \mathbb{R}^{m}\right)$, let $\bar{u} \in$ $L^{2}\left(0, T ; \mathbb{R}^{m}\right)$. Assume that $u_{k} \rightharpoonup \bar{u}$. Let $y_{k}=y\left[u_{k}, y_{0}\right]$ and $\bar{y}=y\left[\bar{u}, y_{0}\right]$. Then,

- $\left(u_{k}\right)_{k \in \mathbb{N}}$ is bounded in $L^{2}\left(0, T ; \mathbb{R}^{m}\right)$
- by Lemma $2, y_{k}$ is bounded in $L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)$.

With the help of Duhamel's formula, we obtain that $y\left[u_{k}, y_{0}\right](t) \rightarrow y\left[\bar{u}, y_{0}\right](t), \quad$ for all $t \in[0, T]$.
Step 1: This directly implies that
$J_{3}\left(u_{k}\right)=\frac{1}{2}\left\langle y_{k}(T), K y_{k}(T)\right\rangle \rightarrow \frac{1}{2}\langle\bar{y}(T), K \bar{y}(T)\rangle=J_{3}(\bar{u})$.
Thus J_{3} is weakly continuous.
[Regularity of J] Step 2: By the dominated convergence theorem,

$$
J_{1}\left(u_{k}\right)=\frac{1}{2} \int_{0}^{T}\left\langle y_{k}(t), W y_{k}(t)\right\rangle \mathrm{d} t \rightarrow=J_{1}(\bar{u}) .
$$

Step 3: Finally, we have:
$J_{2}\left(u_{k}\right)-J_{2}(\bar{u})=\frac{1}{2} \int_{0}^{T}\left\|u_{k}(t)\right\|^{2}-\|\bar{u}(t)\|^{2} \mathrm{~d} t$
$=\underbrace{\int_{0}^{T}\left\langle\bar{u}(t), u_{k}(t)-\bar{u}(t)\right\rangle \mathrm{d} t}_{\rightarrow 0}+\frac{1}{2} \underbrace{\int_{0}^{T}\left\|u_{k}(t)-\bar{u}(t)\right\|^{2} \mathrm{~d} t}_{\geq 0}$.
Therefore, $\lim \inf J_{2}\left(u_{k}\right)-J_{2}(\bar{u}) \geq 0$ and J_{2} is weakly lower semi-continuous.

[Existence result]

Lemma 5. For all $y_{0} \in \mathbb{R}^{n}$, the problem $\left(P^{\prime}\left(y_{0}\right)\right)$ has a unique solution $\bar{u}\left[y_{0}\right]$. Moreover, there exists a constant M, independent of y_{0}, such that

$$
\left\|\bar{u}\left[y_{0}\right]\right\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\| .
$$

Proof. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a minimizing sequence. W.l.o.g.,
$\frac{1}{2}\left\|u_{k}\right\|_{L^{2}(0, T)}^{2}=J_{2}\left(u_{k}\right) \leq J\left(u_{k}\right) \leq J(0) \leq \frac{1}{2}\left(M\left\|y_{0}\right\|\right)^{2}$.
Extracting a subsequence, we can assume that $u_{k} \rightharpoonup \bar{u}$, for some $\bar{u} \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$. We have $\|\bar{u}\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\|$, moreover

$$
J(\bar{u}) \leq \lim \inf J\left(u_{k}\right)=\inf _{u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)} J(u)
$$

Thus, \bar{u} is optimal. Strict convexity of $J \Longrightarrow$ uniqueness.

2. PONTRYAGIN'S PRINCIPLE

[Fréchet differentiability]

Definition 6. The map J is said to be Fréchet differentiable if for any $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$, there exists a continuous linear form $D J(u): L^{2}\left(0, T ; \mathbb{R}^{m}\right) \rightarrow \mathbb{R}$ such that

$$
\frac{|J(u+v)-J(u)-D J(u) v|}{\|v\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}} \underset{\|v\|_{L^{2} \downarrow 0}}{\longrightarrow} 0 .
$$

Remark. A sufficient condition for Fréchet differentiability is to have

$$
|J(u+v)-J(u)-D J(u) v| \leq M\|v\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}
$$

for all v and for some M independent of v.

[Fréchet differentiability]

Lemma 7. The map J is Fréchet differentiable. Let \bar{u} and $v \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$. Let $\bar{y}=y\left[\bar{u}, y_{0}\right]$ and let $z \in y[v, 0]$. Omitting the time variable,
$D J(\bar{u}) v=\int_{0}^{T}\langle W \bar{y}, z\rangle+\langle\bar{u}, v\rangle \mathrm{d} t+\langle K \bar{y}(T), z(T)\rangle$.
Proof. First, $y\left[u+v, y_{0}\right]-y\left[u, y_{0}\right]=y[v, 0]=z$.
We have
$\begin{aligned} J_{1}(\bar{u}+v)-J_{1}(\bar{u})=\underbrace{\int_{0}^{T}\langle W \bar{y}, z\rangle \mathrm{d} t}_{=D J_{1}(\bar{u}) v} & +\underbrace{\frac{1}{2} \int_{0}^{T}\langle z, W z\rangle \mathrm{d} t} \\ & =\mathcal{O}\left(\|z\|_{L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)}^{2}\right) \\ & =\mathcal{O}\left(\|v\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}\right)\end{aligned}$
[Fréchet differentiability] Similarly, we have

$$
J_{2}(\bar{u}+v)-J_{2}(\bar{u})=\underbrace{\int_{0}^{T}\langle\bar{u}, v\rangle \mathrm{d} t}_{=D J_{2}(\bar{u}) v}+\frac{1}{2}\|v\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}
$$

and
$J_{3}(\bar{u}+v)-J_{3}(\bar{u})=\underbrace{\langle K \bar{y}(T), z(T)\rangle}_{=D J_{3}(\bar{u}) v}+\langle z(T), K z(T)\rangle$.
[Riesz representative] Pre-hamiltonian: given $(u, y, p) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$,
$H(u, y, p)=\frac{1}{2}\left(\langle y, W y\rangle+\|u\|^{2}\right)+\langle p, A y+B u\rangle \in \mathbb{R}$.
We have

$$
\begin{aligned}
\nabla_{y} H(u, y, p) & =W y+A^{\top} p \\
\nabla_{u} H(u, y, p) & =u+B^{\top} p
\end{aligned}
$$

Lemma 8. Let $\bar{u} \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$. Let $\bar{y}=y\left[\bar{u}, y_{0}\right]$. Let $p \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)$ be the solution to

$$
-\dot{p}(t)=\nabla_{y} H(\bar{u}(t), \bar{y}(t), p(t)), \quad p(T)=K \bar{y}(T)
$$

Then,

$$
D J(\bar{u}) v=\left\langle\nabla_{u} H(\bar{u}(\cdot), \bar{y}(\cdot), p(\cdot)), v\right\rangle_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}
$$

[Riesz representative] Proof. We have

$$
\begin{aligned}
&\langle K \bar{y}(T), z(T)\rangle=\langle p(T), z(T)\rangle-\langle p(0), z(0)\rangle \\
&=\int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}\langle p(t), z(t)\rangle \mathrm{d} t \\
&=\int_{0}^{T}\langle\dot{p}(t), z(t)\rangle+\langle p(t), \dot{z}(t)\rangle \mathrm{d} t \\
&=\int_{0}^{T}\left\langle-A^{\top} p-W \bar{y}, z\right\rangle+\langle p, A z+B v\rangle \mathrm{d} t \\
&=\int_{0}^{T}-\langle W \bar{y}, z\rangle+\left\langle B^{\top} p, v\right\rangle \mathrm{d} t
\end{aligned}
$$

Combined with Lemma 7 and the expression of $\nabla_{u} H(u, y, p)$, we obtain the result.

[Pontryagin's principle]

Theorem 9. Let $\bar{u} \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$. Let $\bar{y}=y\left[\bar{u}, y_{0}\right]$.
Let \bar{p} be defined by the adjoint equation

$$
\begin{aligned}
-\dot{\bar{p}}(t) & =\nabla_{y} H(\bar{u}(t), \bar{y}(t), \bar{p}(t))=A^{\top} \bar{p}(t)+W \bar{y}(t), \\
\bar{p}(T) & =K \bar{y}(T) .
\end{aligned}
$$

Then, \bar{u} is a solution to $\left(P^{\prime}\left(y_{0}\right)\right)$ if and only if

$$
\bar{u}(t)+B^{\top} \bar{p}(t)=\nabla_{u} H(\bar{u}(t), \bar{y}(t), \bar{p}(t))=0
$$

for a.e. $t \in(0, T)$.
Proof. Since J is convex, \bar{u} is optimal if and only if $D J(\bar{u})=0$.
Remark. By convexity of $H(\cdot, \bar{y}(t), \bar{p}(t))$,

$$
\begin{aligned}
& \nabla_{u} H(\bar{u}(t), \bar{y}(t), \bar{p}(t))=0 \\
\Longleftrightarrow & \bar{u}(t) \in \underset{v \in \mathbb{R}^{m}}{\operatorname{argmin}} H(v, \bar{y}(t), \bar{p}(t)) .
\end{aligned}
$$

[Estimate of p]

Lemma 10. Let \bar{u} denote the solution to $\left(P^{\prime}\left(y_{0}\right)\right)$, let $\bar{y}=y\left[\bar{u}, y_{0}\right]$, and let \bar{p} be the associated costate. Then, there exists a constant M, independent of y_{0}, such that
$\|\bar{p}\|_{L^{\infty}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\|$ and $\|\bar{p}\|_{H^{1}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\|$.
Proof. We know that
$\|\bar{u}\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\|$ and $\|\bar{y}\|_{L^{\infty}\left(0, T ; \mathbb{R}^{m}\right)} \leq M\left\|y_{0}\right\|$.
Denote $\tilde{p}(t)=\bar{p}(T-t)$. Then \tilde{p} is solution to

$$
\tilde{p}(t)=A^{\top} \tilde{p}(t)+W \bar{y}(T-t), \quad \tilde{p}(0)=K \bar{y}(T) .
$$

Duhamel \Longrightarrow bounds of \tilde{p} in $L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)$ and $H^{1}\left(0, T ; \mathbb{R}^{n}\right)$.

[A last formula]

Lemma 11. Let $\bar{u}=\bar{u}\left[y_{0}\right]$, let $\bar{y}=y\left[\bar{u}, y_{0}\right]$, and let \bar{p} be the associated costate. Then,

$$
V\left(y_{0}\right):=\left(\inf _{u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)} J(u)\right)=J(\bar{u})=\frac{1}{2}\left\langle\bar{p}(0), y_{0}\right\rangle .
$$

Proof. We have

$$
\begin{aligned}
2 J_{3}(\bar{u}) & =\langle\bar{y}(T), K \bar{y}(T)\rangle=\langle\bar{p}(T), \bar{y}(T)\rangle \\
& =\int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\bar{p}(t), \bar{y}(t)\rangle \mathrm{d} t+\left\langle\bar{p}(0), y_{0}\right\rangle \mathrm{d} t
\end{aligned}
$$

[A last formula] We further have

$$
\begin{aligned}
& \int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}\langle\bar{p}(t), \bar{y}(t)\rangle \mathrm{d} t=\int_{0}^{T}\langle\dot{p}, \bar{y}\rangle+\langle\bar{p}, \dot{\bar{y}}\rangle \mathrm{d} t \\
& \quad=\int_{0}^{T}\left\langle-A^{\top} \bar{p}-W \bar{y}, \bar{y}\right\rangle+\langle\bar{p}, A \bar{y}+B \bar{u}\rangle \mathrm{d} t \\
& \quad=\int_{0}^{T}-\langle W \bar{y}, \bar{y}\rangle+\left\langle B^{\top} \bar{p}, \bar{u}\right\rangle \mathrm{d} t \\
& \quad=\int_{0}^{T}-\langle W \bar{y}, \bar{y}\rangle-\|\bar{u}\|^{2} \mathrm{~d} t \\
& \quad=-2 J_{1}(\bar{u})-2 J_{2}(\bar{u}) .
\end{aligned}
$$

Combining the last two equalities, we obtain

$$
J(\bar{u})=J_{1}(\bar{u})+J_{2}(\bar{u})+J_{3}(\bar{u})=\frac{1}{2}\left\langle\bar{p}(0), y_{0}\right\rangle
$$

3. RICCATI EQUATION

[Linear optimality system]

The numerical resolution of $\left(P^{\prime}\left(y_{0}\right)\right)$ boils down to the numerical resolution of the following linear optimality system:
$\left\{\begin{aligned} \dot{y}(t)-A y(t)-B u(t) & =0 & & \text { State equation } \\ \dot{p}(t)+A^{\top} p(t)+W y(t) & =0 & & \text { Adjoint equation } \\ u(t)+B^{\top} p(t) & =0 & & \text { Minimality condition } \\ p(T)-K y(T) & =0 & & \text { Initial condition } \\ y(0) & =y_{0} . & & \text { Terminal condition }\end{aligned}\right.$

More precisely: Theorem 17 ensures that the optimality system has a unique solution, which is ($\bar{y}, \bar{u}, \bar{p}$).
[Linear optimality system] After elimination of $u=-B^{\top} p$, we obtain the coupled system:

$$
\left\{\begin{aligned}
\dot{y}(t)-A y(t)+B B^{\top} p(t) & =0 \\
\dot{p}(t)+A^{\top} p(t)+W y(t) & =0 \\
p(T)-K y(T) & =0 \\
y(0) & =y_{0} .
\end{aligned}\right.
$$

$\left(O S\left(y_{0}\right)\right)$
[Key idea] A key idea is to decouple the linear system, by constructing a map

$$
E:[0, T] \rightarrow \mathbb{R}^{n \times n}
$$

independent of y_{0}, such that for any solution (y, p) to $\left(O S\left(y_{0}\right)\right)$, we have

$$
p(t)=-E(t) y(t) .
$$

Roadmap. Once E has been constructed, we have:

$$
\dot{y}=A y+B u=A y-B B^{\top} p=\left(A+B B^{\top} E\right) y
$$

together we the initial condition $y(0)=y_{0}$. Thus, y can be computed by solving a linear differential system. Then, p and u are obtained via

$$
p=-E y \quad \text { and } \quad u=-B^{\top} p
$$

[Derivation of the Riccati equation] Wanted: $p=-E y$. The terminal condition $p(T)=K y(T)$ yields

$$
E(T)=-K
$$

Next, by differentiation, we have:

$$
\dot{p}=-\dot{E} y-E \dot{y},
$$

therefore,

$$
\begin{aligned}
-\dot{E} y & =\dot{p}+E \dot{y} \\
& =\left[-A^{\top} p-W y\right]+\left[E\left(A y-B B^{\top} p\right)\right] \\
& =\left[A^{\top} E y-W y\right]+\left[E\left(A y+B B^{\top} E y\right)\right] \\
& =\left(A^{\top} E+E A-W+E B B^{\top} E\right) y .
\end{aligned}
$$

[Riccati equation]

Theorem 12. There exists a unique smooth solution to the following matrix differential equation, called Riccati equation:
$\left\{\begin{aligned}-\dot{E}(t) & =A^{\top} E(t)+E(t) A-W+E(t) B B^{\top} E(t) \\ E(T) & =-K .\end{aligned}\right.$
Moreover, for all $y_{0} \in \mathbb{R}^{n}$, the optimal trajectory \bar{y} for $\left(P^{\prime}\left(y_{0}\right)\right)$ is the solution to the closed-loop system

$$
\dot{y}(t)=\left(A+B B^{\top} E(t)\right) y(t), \quad y(0)=y_{0} .
$$

It also holds:

$$
\begin{equation*}
\bar{p}(t)=-E(t) \bar{y}(t) \quad \text { and } \quad \bar{u}\left[y_{0}\right](t)=\underbrace{B^{\top} E(t) \bar{y}(t)}_{\text {Feedback law! }} . \tag{1}
\end{equation*}
$$

[Riccati equation] Proof. Step 1. The only difficulty is to prove that $(R E)$ is well-posed. Once we have a solution E, the closed-loop system and relation (1) define a triplet (u, y, p) which satisfies the linear optimality system:

- (y, u) satisfies the state equation
- u satisfies the minimality condition
- p satisfies the adjoint equation:

$$
-\dot{p}=\dot{E} y+E \dot{y}=\ldots=A^{\top} p+W y
$$

Thus $(u, y, p)=(\bar{u}, \bar{y}, \bar{p})$.
[Riccati equation] Step 2. The Riccati equation has the abstract form:

$$
-\dot{E}(t)=\mathcal{F}(E(t)), \quad E(T)=-K
$$

The map $\mathcal{F}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ is polynomial, thus locally Lipschitz continuous (but not globally Lipschitz continuous!).
By the Picard-Lindelöf theorem, there exists $\tau \in[-\infty, T)$ such that $(R E)$ has a unique solution on $(\tau, T]$. If $\tau \in \mathbb{R}$, then

$$
\lim _{t \downarrow \tau}\|E(t)\|=\infty
$$

[Riccati equation] Step 3. Assume that $\tau \geq 0$. Let $s \in(\tau, T]$. Let $y_{s} \in \mathbb{R}^{n}$, consider

$$
\begin{aligned}
& \inf \frac{1}{2} \int_{s}^{T}\left(\langle y(t), W y(t)\rangle+\|u(t)\|^{2}\right) \mathrm{d} t+\frac{1}{2}\langle y(T), K y(T)\rangle \\
& \text { s.t.: }\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+B u(t) \\
y(s)=y_{s} .
\end{array}\right.
\end{aligned}
$$

Adapting the theory developed previously, we prove the existence of a unique solution (\bar{u}, \bar{y}) with associated costate p, such that

$$
\begin{equation*}
p(s)=-E(s) y_{s} \quad \text { and } \quad\|p(s)\| \leq M\left\|y_{s}\right\| \tag{2}
\end{equation*}
$$

Here the constant M is independent of $y_{s},(\bar{u}, \bar{y})$ and p, it can also be shown to be independent of s.
[Riccati equation] Conclusion. Let $s>0$ be such that

$$
\|E(s)\| \geq M+2
$$

where $\|\cdot\|$ denotes the operator norm and where M is the constant appearing in (2).
Let $y_{s} \in \mathbb{R}^{n} \backslash\{0\}$ be such that

$$
\left\|E(s) y_{s}\right\| \geq(M+1)\left\|y_{s}\right\| .
$$

Therefore,

$$
\|p(s)\| \geq(M+1)\left\|y_{s}\right\|>M\left\|y_{s}\right\|
$$

A contradiction.

[Additional properties]

Lemma 13. (1) For all $y_{0} \in \mathbb{R}^{n}$,

$$
V\left(y_{0}\right):=\left(\inf _{u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)} J(u)\right)=-\frac{1}{2}\left\langle y_{0}, E(0) y_{0}\right\rangle .
$$

(2) For all $t \in[0, T], E(t)$ is symmetric negative semi-definite.
(3) For all $y_{0} \in \mathbb{R}^{n}, \nabla V\left(y_{0}\right)=\bar{p}(0)$.

Proof.
(1) We have $V\left(y_{0}\right)=\frac{1}{2}\left\langle\bar{p}(0), y_{0}\right\rangle=-\frac{1}{2}\left\langle y_{0}, E(0) y_{0}\right\rangle$.
(2) Verify that E^{\top} is the solution ($R E$). Moreover, $V\left(y_{0}\right) \geq 0$.
(3) We have $\nabla V\left(y_{0}\right)=-E(0) y_{0}=\bar{p}(0)$.

4. SHOOTING METHOD

[Optimality system] Recall the optimality system to be solved:

$$
\left\{\begin{array}{lrl}
\dot{y}=A y-B B^{\top} p, & y(0) & =y_{0} \\
\dot{p}=-A^{\top} p-W y, & p(T) & =K y(T) .
\end{array}\right.
$$

Equivalently:
$\binom{\dot{y}}{\dot{p}}=\underbrace{\left(\begin{array}{cc}A & -B B^{\top} \\ W & A^{\top}\end{array}\right)}_{=: R}\binom{y}{p}, y(0)=y_{0}, p(T)=K y(T)$.
The optimality system is a two-point boundary value problem.
If $p(0)$ was known, then the differential system could be solved numerically.
Shooting method: find $p(0)$ such that $p(T)=$ $K y(T)$.
[Shooting] Setting $\left(\begin{array}{ll}X_{1} & X_{2} \\ X_{3} & X_{4}\end{array}\right)=e^{T R}$, we have the equivalent formulation:

$$
\binom{y(T)}{p(T)}=e^{T R}\binom{y(0)}{p(0)}, y(0)=y_{0}, p(T)=K y(T)
$$

The optimality system reduces to the shooting equation:

$$
\begin{align*}
X_{3} y_{0}+X_{4} p(0) & =K\left(X_{1} y_{0}+X_{2} p(0)\right) \\
\Longleftrightarrow p(0) & =\left(X_{4}-K X_{2}\right)^{-1}\left(K X_{1}-X_{3}\right) y_{0} \tag{SE}
\end{align*}
$$

[Shooting algorithm]

In the LQ case, the shooting algorithm consists then in the following steps:

- Compute $e^{T R}$, by solving the matrix differential equation

$$
\dot{X}(t)=R X(t), \quad X(0)=I
$$

in $\mathbb{R}^{2 n \times 2 n}$.

- Solve the shooting equation $(S E)$ and find p_{0}.
- Solve the differential equation

$$
\binom{\dot{y}}{\dot{p}}=R\binom{y}{p}, \quad\binom{y(0)}{p(0)}=\binom{y_{0}}{p_{0}} .
$$

- The optimal control is given by $u=-B^{\top} p$.

