SOD 311 — Lecture 3: HJB equation and viscosity solutions

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- *Goal:* finding global solutions to optimal control problems (in feedback form), by solving a non-linear PDE.
- *Issues:* characterization of the value function with the Hamilton-Jacobi-Bellman equation.

[Bibliography]

The following references are related to Lecture 3:

- M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, 1997.
- F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitres 3 et 4).

1. INTRODUCTION

[Introduction]

- Our results so far were based on optimality conditions (Pontryagin's principle).
- Now: a different approach, based on **dynamic programming**.

In some sense, more specific to optimal control.

- The dynamic programming principle is ubiquitous in optimization. A very general concept allowing to "split" some problems into a family of simpler problems.
- The central tool: the value function V.
 - \cdot Defined as the value of the optimization problem, expressed as a function of the initial state.
 - Characterized as the unique **viscosity** solution of a non-linear partial differential equation (PDE) called **HJB equation**.

[Introduction]

- *Interest:* a **globally optimal** solution to the problem can be derived from V.
- *Limitation:* curse of dimensionality.
- *Warning:* focus on a specific class of problems. All concepts can be extended, in particular to a stochastic framework (finance), and to other nonlinear PDEs.

[Problem formulation]

Data of the problem and assumptions:

- A parameter $\lambda > 0$.
- A non-empty and compact subset U of \mathbb{R}^m .
- A mapping $f: (u, y) \in U \times \mathbb{R}^n \to \mathbb{R}^n$, such that $||f(u, y)|| \le ||f||_{\mathcal{H}}$

$$\|f(u',y') - f(u,y)\| \le \|f\|_{\infty}^{\infty}, y') - (u,y)\|,$$

for all (u,y) and $(u',y') \in U \times \mathbb{R}^n.$

• A mapping $\ell : (u, y) \in U \times \mathbb{R}^n \to \mathbb{R}$, such that $\begin{aligned} & \|\ell(u, y)\| \leq \|\ell\|_{\infty}, \\ & \|\ell(u', y') - \ell(u, y)\| \leq L_{\ell} \|(u', y') - (u, y)\|, \end{aligned}$

for all (u, y) and $(u', y') \in U \times \mathbb{R}^n$.

[Problem formulation]

- Notation: for any $\tau \in [0,\infty]$, \mathcal{U}_{τ} is the set of measurable functions from $(0,\tau)$ to U.
- State equation: for $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_{\infty}$, there is a unique solution y[u, x] to the ODE

$$\dot{y}(t) = f(u(t), y(t)), \quad y(0) = x,$$

by the theorem of Picard-Lindelöf (Cauchy-Lipschitz).

• Cost function W, for $u \in \mathcal{U}_{\infty}$ and $x \in \mathbb{R}^n$:

$$W(u,x) = \int_0^\infty e^{-\lambda t} \ell(u(t), y[u,x](t)) \,\mathrm{d}t.$$

• Optimal control problem and value function V: $V(x) = \inf_{u \in \mathcal{U}_{\infty}} W(u, x). \qquad (P(x))$

[Grönwall's lemma]

Lemma 1. (Grönwall's lemma). Let $\alpha > 0$ and let $\beta > 0$. Let $\theta \colon [0, \infty) \to \mathbb{R}$ be a continuous function such that

$$\theta(t) \le \alpha + \beta \int_0^t \theta(s) \, \mathrm{d}s, \quad \forall t \in [0, \infty).$$

Then, $\theta(t) \leq \alpha e^{\beta t}$, for all $t \in [0, \infty)$.

Corollary 2. Let $u \in \mathcal{U}_{\infty}$. For all x and \tilde{x} , for all $t \geq 0$, it holds:

 $\|y[u, x](t) - y[u, \tilde{x}](t)\| \le e^{L_f t} \|x - \tilde{x}\|.$ Proof. Grönwall with $\theta = \|y - \tilde{y}\|, \ \alpha = \|x - \tilde{x}\|,$

 $\beta = L_f.$

2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle). Let $\tau > 0$. Then for all $x \in \mathbb{R}^n$, abbreviating y = y[u, x],

$$V(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t + e^{-\lambda \tau} V(y(\tau)) \right)$$
(DPP)

Interpretation:

- V(x) is the value function of an optimal control problem on the interval $(0, \tau)$.
- The original integral has been truncated:

 $\int_{\tau}^{\infty} e^{-\lambda t} \ell(u(t), y(t)) dt \quad \rightsquigarrow \quad e^{-\lambda \tau} V(y(\tau)).$ The term $e^{-\lambda \tau} V(y(\tau))$ is the "optimal cost from τ to ∞ ".

[Flow property]

Lemma 4. (Flow property). Let $x \in \mathbb{R}^n$ and let $u \in \mathcal{U}_{\infty}$. Define: • $u_1 = u_{|(0,\tau)} \in \mathcal{U}_{\tau}$ • $u_2 = u_{|(\tau,\infty)} \in L^{\infty}(\tau,\infty;U)$ • $\tilde{u}_2 \in \mathcal{U}_{\infty}, \tilde{u}_2(t) = u_2(t+\tau)$. It holds: $y[u,x](t) = y[\tilde{u}_2, y[u_1,x](\tau)](t-\tau),$ for any $t \geq \tau$. Remark. After time τ , one can forget u_1 and only remember $y[x, u_1](\tau)$.

[Proof]

$$\begin{split} \tilde{P}roof \ of \ the \ DP-principle. \ \text{Let us denote} \\ \tilde{V}(x) &= \inf_{u \in \mathcal{U}_{\tau}} \Big(\int_{0}^{\tau} e^{-\lambda t} \ell\big(u(t), y(t)\big) \, \mathrm{d}t + e^{-\lambda \tau} V(y(\tau)) \Big). \\ \text{Step 1: } V \geq \tilde{V}. \ \text{Let } u, u_1, u_2, \ \text{and} \ \tilde{u}_2 \ \text{be as in Lemma} \\ 4. \\ W(u, x) &= \int_{0}^{\infty} e^{-\lambda t} \ell\big(u(t), y[u, x](t)\big) \, \mathrm{d}t \\ &= \int_{0}^{\tau} e^{-\lambda t} \ell\big(u(t), y[u, x](t)\big) \, \mathrm{d}t \\ &+ e^{-\lambda \tau} \int_{\tau}^{\infty} e^{-\lambda(t-\tau)} \ell\big(u(t), y[u, x](t)\big) \, \mathrm{d}t \\ &= \int_{0}^{\tau} e^{-\lambda t} \ell\big(u(t), y[u, x](t)\big) \, \mathrm{d}t \\ &+ e^{-\lambda \tau} \int_{0}^{\infty} e^{-\lambda s} \ell\big(u(s+\tau), y[u, x](s+\tau)\big) \, \mathrm{d}s. \end{split}$$

[**Proof**] We further have, for the last integral:

$$\int_0^\infty e^{-\lambda s} \ell(u(s+\tau), y[u, x](s+\tau)) \, \mathrm{d}s$$
$$= \int_0^\infty e^{-\lambda s} \ell(\tilde{u}_2(s), y[\tilde{u}_2, y[u_1, x](\tau)](s)) \, \mathrm{d}s$$
$$= W(\tilde{u}_2, y[u_1, x](\tau)) \ge V(y[u_1, x](\tau)).$$
Injecting in the above equality:
$$\ell^\tau$$

$$W(u,x) \ge \int_0^{\infty} e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt$$
$$+ e^{-\lambda \tau} V(y[u_1, x](\tau))$$
$$\ge \tilde{V}(x).$$

Minimizing with respect to u yields $V \ge \tilde{V}$.

[Proof]

Step 2: $\tilde{V} \leq V$. Let $\varepsilon > 0$. Let $u_1 \in \mathcal{U}_{\tau}$ be such that $\int_0^{\tau} e^{-\lambda t} \ell(u_1(t), y[u_1](t)) dt + e^{-\lambda \tau} V(y[u_1, x](\tau))$ $\leq \tilde{V}(x) + \varepsilon/2.$ Let $\tilde{u}_2 \in \mathcal{U}_{\infty}$ be such that $W(\tilde{u}_2, y[u_1, x](\tau)) \leq V(y[u_1, x](\tau)) + \varepsilon/2.$ Let u be defined by $u_1(t) = \int u_1(t)$ for a.e. $t \in (0, \tau)$,

$$u(t) = \begin{cases} \tilde{u}_2(t-\tau) & \text{for a.e. } t \in (\tau, \infty). \end{cases}$$

[Proof]

The same calculation as above yields:

$$W(u,x) = \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt$$

$$+ e^{-\lambda \tau} \underbrace{\int_0^\infty e^{-\lambda t} \ell(\tilde{u}_2(t), y[\tilde{u}_2(t), y[u_1, x](\tau)](t)) dt}_{=W(\tilde{u}_2, y[u_1, x](\tau)))}$$

Therefore,

$$W(u, x) \leq \int_{0}^{\tau} e^{-\lambda t} \ell(u_{1}(t), y[u_{1}, x](t)) dt + e^{-\lambda \tau} (V(y[u_{1}, x](\tau)) + \varepsilon/2) \leq \tilde{V}(x) + \varepsilon.$$

It follows that
$$V(x) \leq \tilde{V}(x) + \varepsilon, \quad \forall \varepsilon > 0.$$

[Decoupling]

- Corollary 5. Let $u \in \mathcal{U}_{\infty}$ be a solution to P(x). Let $\tau > 0$. Let u_1 and \tilde{u}_2 be defined as in Lemma 4. Then,
 - · u_1 is optimal in the DP principle · \tilde{u}_2 is optimal for $P(y[u_1, x](\tau))$.
 - Conversely: let u_1 be a minimizer of (DPP). Let \tilde{u}_2 be a solution to $P(y[u_1, x])(\tau)$. Let $u \in \mathcal{U}_{\infty}$ be defined by

$$u(t) = \begin{cases} u_1(t) & \text{for a.e. } t \in (0,\tau) \\ \tilde{u}_2(t-\tau) & \text{for a.e. } t \in (\tau,\infty) \end{cases}$$

Then u is a solution to P(x).

What can we do with the value function? If V is known, then the DP-principle allows to **decouple** the problem in time.

3. A FIRST CHARACTERIZATION OF THE VALUE FUNCTION

[Regularity of V]

Lemma 6. The value function V is bounded. It is also uniformly continuous, that is, for all $\varepsilon > 0$, there exists $\alpha > 0$ such that for all x and $\tilde{x} \in \mathbb{R}^n$,

 $\|\tilde{x} - x\| \le \alpha \Longrightarrow |V(\tilde{x}) - V(x)| \le \varepsilon.$

Proof. Step 1: proof of boundedness. Let $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_{\infty}$. We have

$$\begin{split} |W(x,u)| &\leq \int_0^\infty e^{-\lambda t} \|\ell\|_\infty \,\mathrm{d} t \leq \frac{1}{\lambda} \|\ell\|_\infty. \\ \text{Thus } |V(x)| &\leq \frac{1}{\lambda} \|\ell\|_\infty. \end{split}$$

[Regularity of V]

Step 2: proof of uniform continuity. Let $\varepsilon > 0$. Let $\alpha > 0$. Let x and \tilde{x} be such that $\|\tilde{x} - x\| \leq \alpha$, we will specify α later. We have:

$$|V(\tilde{x}) - V(x)| = \left| \inf_{u \in \mathcal{U}_{\infty}} W(\tilde{x}, u) - \inf_{u \in \mathcal{U}_{\infty}} W(x, u) \right|$$

$$\leq \sup_{u \in \mathcal{U}_{\infty}} \left| W(\tilde{x}, u) - W(x, u) \right| \leq \Delta_{1} + \Delta_{2},$$

where

$$\Delta_1 = \sup_{u \in \mathcal{U}_{\infty}} \int_0^{\tau} e^{-\lambda t} \left| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \right| dt$$
$$\Delta_2 = \sup_{u \in \mathcal{U}_{\infty}} \int_{\tau}^{\infty} e^{-\lambda t} \left| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \right| dt,$$

where $\tilde{y} = y[\tilde{x}, u]$ and y = y[x, u] and where $\tau > 0$ is arbitrary.

 $\begin{aligned} &[\text{Regularity of } V]\\ \bullet \text{ Bound of } \Delta_1. \text{ By Corollary 2,}\\ &\|\tilde{y}(t) - y(t)\| \leq e^{L_f t} \|\tilde{x} - x\| \leq e^{L_f \tau} \alpha, \quad \forall t \in [0, \tau].\\ &\text{ Therefore, } \Delta_1 \leq \tau L_\ell e^{L_f \tau} \alpha.\\ \bullet \text{ Bound of } \Delta_2. \text{ Since } \ell \text{ is bounded,}\\ &\Delta_2 \leq 2 \|\ell\|_{\infty} \int_{\tau}^{\infty} e^{-\lambda t} \, \mathrm{d}t = \frac{2 \|\ell\|_{\infty}}{\lambda} e^{-\lambda \tau}. \end{aligned}$

Conclusion: take $\tau > 0$ sufficiently large, so that $\Delta_2 \leq \frac{\varepsilon}{2}$. Take then α sufficiently small, so that $\Delta_1 \leq \frac{\varepsilon}{2}$.

The construction of α is independent of x and \tilde{x} . We have $|V(x) - V(\tilde{x})| \leq \varepsilon$.

[(More) regularity of V]

Lemma 7. We have

- if $\lambda < L_f$, then V is (λ/L_f) -Hölder continuous
- if $\lambda = L_f$, then V is α -Hölder continuous for all $\alpha \in (0, 1)$
- if $\lambda > L_f$, then V is Lipschitz continuous.

Exercise: prove the last statement of the lemma.

$$\begin{split} & [(\mathbf{More}) \text{ regularity of } V] \\ & Proof of the last case. We have \\ & |V(\tilde{x}) - V(x)| \\ & \leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} |\ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t))| \, \mathrm{d}t \\ & \leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} L_{\ell} \|\tilde{y}(t) - y(t)\| \, \mathrm{d}t \\ & \leq \int_{0}^{\infty} e^{-\lambda t} L_{\ell} e^{L_{f}t} \|\tilde{x} - x\| \, \mathrm{d}t \\ & \leq \frac{L_{\ell}}{\lambda - L_{f}} \|\tilde{x} - x\|. \end{split}$$

[DP-mapping]

Notation: $BUC(\mathbb{R}^n)$ is the set of **bounded and uniformly continuous** functions from \mathbb{R}^n to \mathbb{R} . Lemma 8. The space $BUC(\mathbb{R}^n)$, equipped with the uniform norm (denoted $\|\cdot\|_{\infty}$) is a **Banach** space. Fix $\tau > 0$. Consider the "**DP-mapping**":

 $\mathcal{T}: v \in BUC(\mathbb{R}^n) \mapsto \mathcal{T}v \in BUC(\mathbb{R}^n),$

defined by

$$\mathcal{T}v(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t + e^{-\lambda \tau} v(y(\tau)) \right),$$

where $y = y[u, x]$. Exercise: verify that $\mathcal{T}v \in BUC(\mathbb{R}^{n})$.

[DP-mapping]

Proof. Let $v \in BUC(\mathbb{R}^n)$. Let $\varepsilon > 0$. Let $\alpha_0 > 0$ be such that

 $\|\tilde{x} - x\| \leq \alpha_0 \Longrightarrow |v(\tilde{x}) - v(x)| \leq \varepsilon/2.$ Let $\alpha > 0$. Let x and $\tilde{x} \in \mathbb{R}^n$ be such that $\|\tilde{x} - x\| \leq \alpha$. The value of α will be fixed later. For all $u \in U_{\tau}$, for all $t \in [0, \tau]$, we have

 $\begin{aligned} \|y[u,\tilde{x}](t) - y[u,x](t)\| &\leq e^{L_f t} \|\tilde{x} - x\| \leq e^{L_f \tau} \alpha. \end{aligned}$ We have $|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \Delta_1 + \Delta_2, \text{ with...}$ [DP-mapping]

$$\Delta_{1} = \sup_{u \in \mathcal{U}_{\tau}} \Big| \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t \\ - \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), \tilde{y}(t)) \, \mathrm{d}t \Big|,$$
$$\Delta_{2} = \sup_{u \in \mathcal{U}} \Big| e^{-\lambda \tau} v(\tilde{y}(\tau)) - e^{-\lambda \tau} v(y(\tau)) \Big|.$$

We fix now

$$\alpha = e^{-L_f \tau} \min\left(\alpha_0, \frac{\varepsilon}{2\tau}\right).$$

We have

 $\Delta_1 \leq \tau L_\ell e^{\tau L_f} \alpha \leq \varepsilon/2 \quad \text{and} \quad \Delta_2 \leq \varepsilon/2,$ since $\|\tilde{y}(\tau) - y(\tau)\| \leq e^{L_f \tau} \alpha \leq \alpha_0$. Therefore, $|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \varepsilon.$

[DP-mapping]

Lemma 9. The operator \mathcal{T} is Lipschitz continuous with modulus $e^{-\lambda \tau}$.

Proof. Let $x \in \mathbb{R}^n$. We have

 $\begin{aligned} |\mathcal{T}\tilde{v}(x) - \mathcal{T}v(x)| &\leq \\ &\leq \sup_{u \in \mathcal{U}_{\tau}} \left| e^{-\lambda \tau} \tilde{v}(y[x, u](\tau)) - e^{-\lambda \tau} v(y[x, u](\tau)) \right| \\ &\leq e^{-\lambda \tau} \|\tilde{v} - v\|_{\infty}. \end{aligned}$

We conclude that

 $\|\mathcal{T}\tilde{v} - \mathcal{T}v\|_{\infty} \le e^{-\lambda\tau} \|\tilde{v} - v\|_{\infty}.$

$[\mathbf{A} \text{ characterization of } V]$

Lemma 10. The value function V is the **unique** solution of the fixed-point equation:

 $\mathcal{T}v = v, \quad v \in BUC(\mathbb{R}^n).$

Proof.

- Existence: direct consequence of the DP principle $(V = \mathcal{T}V)$.
- Uniqueness: for any v such that $v = \mathcal{T}v$, we have $\|v - V\|_{\infty} = \|\mathcal{T}v - \mathcal{T}V\|_{\infty} \le e^{-\lambda \tau} \|v - V\|_{\infty}.$ Thus v = V.

Remark: the dynamic programming principle entirely characterises the value function!

[Min-plus linearity]

Notation. Given v_1 and $v_2 \in BUC(\mathbb{R}^n)$, we write $v_1 \leq v_2$ if $v_1(x) \leq v_2(x)$ for all $x \in \mathbb{R}^n$. We define $\min(v_1, v_2) \in BUC(\mathbb{R}^n)$ by $\min(v_1, v_2)(x) = \min(v_1(x), v_2(x)), \quad \forall x \in \mathbb{R}^n$. Given $\alpha \in \mathbb{R}$, we define $v_1 + \alpha$ by $(v_1 + \alpha)(x) = v_1(x) + \alpha$. Lemma 11. Let v_1 and $v_2 \in BUC(\mathbb{R}^n)$. Let $\alpha \in \mathbb{R}$. The map \mathcal{T} is monotone: $v_1 \leq v_2 \Longrightarrow \mathcal{T}v_1 \leq \mathcal{T}v_2$ and min-plus linear: $\min(\mathcal{T}v_1, \mathcal{T}v_2) = \mathcal{T}\min(v_1, v_2),$ $\mathcal{T}(v + \alpha) = (\mathcal{T}v) + e^{-\lambda\tau}\alpha$.

Proof: exercise.

[Hamiltonian We define the **pre-Hamiltonian** H and the **Hamiltonian** \mathcal{H} by $H(u, x, p) = \ell(u, x) + \langle p, f(u, x) \rangle.$

$$\begin{aligned} H(u,x,p) &= \ell(u,x) + \langle p, f(u,x) \rangle \\ \mathcal{H}(x,p) &= \min_{u \in U} H(u,x,p). \end{aligned}$$

Lemma 12. The mapping \mathcal{H} is continuous, concave with respect to p, and Lipschitz continuous with respect to p with modulus $||f||_{\infty}$.

Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As an infimum of concave functions, \mathcal{H} is concave. We have:

$$\begin{aligned} |\mathcal{H}(x,\tilde{p}) - \mathcal{H}(x,p)| &\leq \sup_{u \in U} |H(u,x,\tilde{p}) - H(u,x,p)| \\ &\leq \sup_{u \in U} |\langle \tilde{p} - p, f(u,x) \rangle| \leq ||\tilde{p} - p|| \cdot ||f||_{\infty}. \end{aligned}$$

[Informal derivation]

Notation: $C^1(\mathbb{R}^n)$, the set of continuously differentiable functions from \mathbb{R}^n to \mathbb{R} .

Lemma 13. Let $\Phi \in C^1(\mathbb{R}^n)$. Let $x \in \mathbb{R}^n$, let $u \in \mathcal{U}_{\infty}$, let y = y[u, x]. Consider the mapping:

$$\varphi \colon \tau \in [0,\infty) \mapsto \int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t \\ + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x)$$

Then $\varphi(0) = 0$ and $\varphi \in W^{1,\infty}(0,\infty)$ with

$$\dot{\varphi}(\tau) = e^{-\lambda\tau} \big(H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \big).$$
(*)

In particular: $\dot{\varphi}(0) = H(u(0), x, \nabla \Phi(x)) - \lambda \Phi(x)$ (if u is continuous at 0).

[Informal derivation]

Proof. To simplify, we only consider the case where u is continuous, so that y is C^1 and φ is $C^1(\mathbb{R}^n)$. We have then:

$$\begin{split} \dot{\varphi}(\tau) &= e^{-\lambda\tau} \ell(u(\tau), y(\tau)) + e^{-\lambda\tau} \langle \nabla \Phi(y(\tau)), \dot{y}(\tau) \rangle \\ &- \lambda e^{-\lambda\tau} \Phi(y(\tau)) \\ &= e^{-\lambda\tau} \left[\ell(u(\tau), y(\tau)) + \langle \nabla \Phi(y(\tau)), f(u(\tau), y(\tau)) \rangle \right] \\ &- \lambda e^{-\lambda\tau} \Phi(y(\tau)) \end{split}$$

$$= e^{-\lambda\tau} \Big[H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \Big].$$

[HJB in the classical sense]

Theorem 14. Let $x \in \mathbb{R}^n$. Assume that

- V is continuously differentiable in a neighborhood of x
- P(x) has a solution \overline{u} which is continuous at time 0.

Then,
$$\lambda V(x) - \mathcal{H}(x, \nabla V(x)) = 0,$$

 $\bar{u}(0) \in \operatorname*{argmin}_{u_0 \in U} H(u_0, x, \nabla V(x)).$

r

[HJB in the classical sense]

Proof. Step 1. Let $u_0 \in U$, let u be the constant control equal to u_0 , let y = y[u, x]. By the **dynamic programming** principle, we have:

$$\begin{split} 0 &\leq \varphi(\tau) := \int_0^\tau e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t \\ &\quad + e^{-\lambda \tau} V(y(\tau)) - V(x), \\ \text{for all } \tau. \text{ Since } \varphi(0) = 0, \text{ we deduce from } (*) \text{ that:} \\ 0 &\leq \dot{\varphi}(0) = H(u_0, x, \nabla V(x)) - \lambda V(x). \end{split}$$

Therefore,

 $0 \le H(u_0, x, \nabla V(x)) - \lambda V(x), \quad \forall u_0 \in U.$

[HJB in the classical sense]

Step 2. Let us apply the **dynamic programming principle** again. Redefining φ and setting $\bar{y} = y[\bar{u}, x]$, we obtain:

$$0 = \varphi(\tau) := \int_0^\tau e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \,\mathrm{d}t + e^{-\lambda \tau} V(\bar{y}(\tau)) - V(x),$$

for all $\tau \geq 0$. It follows that

$$0 = H(\bar{u}(0), x, \nabla V(x)) - \lambda V(x).$$

Step 3. It follows that for all $u_0 \in U$,

$$\begin{split} H(\bar{u}(0),x,\nabla V(x)) &= \lambda V(x) \leq H(u_0,x,\nabla V(x)).\\ \text{Therefore, } H(\bar{u}(0),x,\nabla V(x)) = \mathcal{H}(x,\nabla V(x)). \end{split}$$

[HJB in the classical sense]

Corollary 15. Let $t \ge 0$, assume that \bar{u} is continuous in a neighborhood of t and that V is C^1 in a neighborhood of $\bar{y}(t)$, where $\bar{y} := y[\bar{u}, x](t)$. Then, $\bar{u}(t) \in \underset{u_0 \in U}{\operatorname{argmin}} H(u_0, \bar{y}, \nabla V(\bar{y})).$

[HJB in the classical sense] *Remarks*.

Let us define the Q-function by $Q(u, y) := H(u, y, \nabla V(y)),$ assuming that $V \in C^1(\mathbb{R}^n).$

• If the minimizer is unique in the following relation, we have a **feedback law**:

$$\bar{u}(t) = \underset{U}{\operatorname{argmin}} Q(\cdot, \bar{y}(t)).$$

- In some cases, one can show that $\nabla V(\bar{y}(t)) = p(t)$, where p is defined by some adjoint equation \rightarrow **Pontryagin's principle**.
- In **Reinforcement Learning**, the approximation of Q is a central objective.

We will call the equation

 $\lambda v(x) - \mathcal{H}(x, \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n$ (HJB)

Hamilton-Jacobi-Bellman equation, with unknown $v : \mathbb{R}^n \to \mathbb{R}$. Remarks.

- In general V is not differentiable → in which sense is the HJB equation to be understood?
- In Theorem 14, we have shown that

 $\bar{u}(t) \in \operatorname{argmin} H(u_0, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x])),$ (under restrictive assumptions). We will see next that this necessary condition is also **sufficient**.

Theorem 16. (Verification). Let us assume the assumptions of Theorem 14 hold for all $x \in \mathbb{R}^n$, so that the **HJB equation is satisfied in the classical sense.** Let $x \in \mathbb{R}^n$. Assume that there exists a control \bar{u} such that

$$\bar{u}(t) \in \underset{u_0 \in U}{\operatorname{argmin}} H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))),$$

where $\bar{y} = y[\bar{u}, x]$. Then \bar{u} is globally optimal.

Proof. Consider the function:

proving the optimality of \bar{u} .

$$\begin{split} \varphi(\tau) &= \int_0^\tau e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \, \mathrm{d}t + e^{-\lambda \tau} V(\bar{y}(\tau)) - V(x). \\ \text{We have } \varphi(0) &= 0. \text{ Using } (*) \text{ and Theorem 14, we obtain:} \\ \dot{\varphi}(\tau) &= e^{-\lambda \tau} \left[H(\bar{u}(\tau), \bar{y}(\tau), \nabla V(\bar{y}(\tau)) - V(\bar{y}(\tau)) \right] \\ &= e^{-\lambda \tau} \left[\mathcal{H}(\bar{y}(\tau), \nabla V(\bar{y}(\tau))) - V(\bar{y}(\tau)) \right] \\ &= 0. \\ \text{Thus } \varphi \text{ is constant, equal to } 0. \text{ Its limit is given by:} \\ 0 &= \int_0^\infty e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \, \mathrm{d}t - V(x) = W(x, \bar{u}) - V(x), \end{split}$$

5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]

We consider an abstract PDE of the form: $\mathcal{F}(x, v(x), \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n,$

where $\mathcal{F}: \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is continuous. It contains the HJB equation with

$$\mathcal{F}(x, v, p) = \lambda v - \mathcal{H}(x, p)$$

Goal of the section: showing that V is a viscosity solution to the HJB equation.

[Sub- and super-differentials]

Definition 17. Let $v : \mathbb{R}^n \to \mathbb{R}$. The following sets are called **sub- and superdifferential**, respectively:

$$D^{-}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \liminf_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \ge 0 \right\}$$
$$D^{+}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \le 0 \right\}.$$
Exercise. Let $v(x) = |x|$. Show that $D^{-}v(0) = [-1, 1]$.

[Sub- and super-differentials]

We have the following characterization.

Lemma 18. Let $v \colon \mathbb{R}^n \to \mathbb{R}$ be continuous. Let $p \in \mathbb{R}^n$.

- $p \in D^-v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that $\nabla \Phi(x) = p$ and $v \Phi$ has a local minimum in x.
- $p \in D^+v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that $\nabla \Phi(x) = p$ and $v \Phi$ has a local maximum in x.

Proof. The implication \implies is admitted. The implication \Leftarrow is left as an exercise.

[Sub- and super-differentials]

Remark. In the above lemma, one can chose $\Phi(x) = v(x)$ without loss of generality. Thus, we have:

- $(v \Phi)$ has a local minimum in $x \iff v \Phi$ is nonnegative in a neighborhood of $x \iff v$ is locally bounded from below by Φ
- $(v \Phi)$ has a local maximum in $x \iff v \Phi$ is nonpositive in a neighborhood of $x \iff v$ is locally bounded from above by Φ

Remark. If v is Fréchet differentiable at x, then the sub- and superdifferential are equal to $\{\nabla v(x)\}$.

[Viscosity solutions]

Definition 19. Let $v \colon \mathbb{R}^n \to \mathbb{R}$. We call v a viscosity subsolution if

 $\mathcal{F}(x, v(x), p) \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall p \in D^+ v(x)$ or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local maximum in x, $\mathcal{F}(x, v(x), \nabla \Phi(x)) \leq 0.$

[Viscosity solutions]

Definition 20. Let $v \colon \mathbb{R}^n \to \mathbb{R}$. We call v a viscosity supersolution if

 $\mathcal{F}(x, v(x), p) \ge 0, \quad \forall p \in D^- v(x)$

or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local minimum in x,

 $\mathcal{F}(x, v(x), \nabla \Phi(x)) \ge 0.$

We call v a **viscosity solution** if it is a sub- and a supersolution.

[Viscosity solutions]

Theorem 21. The value function V is a **viscosity** solution of the HJB equation.

Step 1: V is a subsolution. Let $x \in \mathbb{R}^n$, let $\Phi \in C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local maximizer in x and $V(x) = \Phi(x)$.

We have to prove that

 $\lambda v(x) - \mathcal{H}(x, \nabla \Phi(x)) \le 0.$

Let $u_0 \in U$, let u be the constant control equal to u_0 and let y = y[u, x]. By the DPP, we have:

$$V(x) \le \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) \,\mathrm{d}t + e^{-\lambda \tau} V(y(\tau)).$$

If
$$\tau$$
 is sufficiently small, we have $V(y(\tau)) \leq \Phi(y(\tau))$.

[Viscosity solutions]

This implies that for τ sufficiently small,

 $0 \leq \int_{0}^{T} e^{-\lambda t} \ell(u_0, y(t)) \, dt + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x) =: \varphi(\tau).$ Since $\varphi(0) = 0$, we deduce with (*) that

 $0 \le \dot{\varphi}(0) = H(u_0, x, \nabla \Phi(x)) - \lambda V(x).$

Minimizing with respect to $u_0 \in U$, we obtain:

$$0 \le \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x),$$

as was to be proved.

[Viscosity solutions]

Step 2: V is supersolution. Let $x \in \mathbb{R}^n$, let $\Phi \in C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local minimizer in x and such that $V(x) = \Phi(x)$. We have to prove that

$$\lambda V(x) - \mathcal{H}(x, \nabla \Phi(x)) \le 0.$$

It follows from the dynamic programming principle that for $\tau>0$ small enough

$$\begin{split} \Phi(x) &\geq \\ \inf_{u \in \mathcal{U}_{\tau}} \underbrace{\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[x, u](t)) \,\mathrm{d}t + e^{-\lambda t} \Phi(y[x, u](\tau))}_{=:\varphi[u](\tau)}. \end{split}$$

$$\begin{split} 0 &\geq \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \dot{\varphi}[u](t) \, \mathrm{d}t \\ &= \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} e^{-\lambda t} \left(H(u(t), y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t)) \right) \, \mathrm{d}t \\ &\geq \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \underbrace{e^{-\lambda t} \left(\mathcal{H}(y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t)) \right)}_{=:\psi[u](t)} \, \mathrm{d}t. \end{split}$$

We have $\psi[u](0) = \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x)$, in particular, $\psi[u](0)$ does not depend on u.

[Viscosity solutions]

Let $\varepsilon > 0$. There exists (exercise!) $\tau > 0$ such that $|\psi[u](t) - \psi[u](0)| \le \varepsilon$, $\forall t \in [0, \tau], \forall u \in \mathcal{U}_{\infty}$. The previous inequality yields

$$0 \ge \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\varepsilon} \left(\psi[u](0) - \varepsilon \right) \mathrm{d}t$$

$$\ge \tau (\mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x) - \varepsilon).$$

Dividing by τ and sending ε to 0, we get the result.

[Viscosity solutions]

Theorem 22. (Comparison principle). Let v_1 be a subsolution to the HJB equation. Let v_2 be a supersolution to the HJB equation. Then

$$v_1(x) \le v_2(x), \quad \forall x \in \mathbb{R}^n.$$

Proof: admitted.

Corollary 23. The value function V is the **unique** viscosity solution.

Proof. By the comparison principle, any viscosity solution v is such that $v \leq V$ and $v \geq V$.