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[Objectives]
• Goal: finding global solutions to optimal control

problems (in feedback form), by solving a non-
linear PDE.
• Issues: characterization of the value function

with the Hamilton-Jacobi-Bellman equation.
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1. INTRODUCTION

[Introduction]
• Our results so far were based on optimality

conditions (Pontryagin’s principle).
• Now: a different approach, based on dynamic

programming.
In some sense, more specific to optimal control.
• The dynamic programming principle is ubiqui-

tous in optimization. A very general concept
allowing to “split” some problems into a family
of simpler problems.
• The central tool: the value function V .

· Defined as the value of the optimization
problem, expressed as a function of the ini-
tial state.
· Characterized as the unique viscosity solu-

tion of a non-linear partial differential equa-
tion (PDE) called HJB equation.

[Introduction]
• Interest: a globally optimal solution to the

problem can be derived from V .
• Limitation: curse of dimensionality.
• Warning: focus on a specific class of problems.

All concepts can be extended, in particular to
a stochastic framework (finance), and to other
nonlinear PDEs.

[Problem formulation]
Data of the problem and assumptions:
• A parameter λ > 0.
• A non-empty and compact subset U of Rm.
• A mapping f : (u, y) ∈ U × Rn → Rn, such that

‖f(u, y)‖ ≤‖f‖∞,
‖f(u′, y′)− f(u, y)‖ ≤Lf‖(u′, y′)− (u, y)‖,

for all (u, y) and (u′, y′) ∈ U × Rn.
• A mapping ` : (u, y) ∈ U × Rn → R, such that

‖`(u, y)‖ ≤‖`‖∞,
‖`(u′, y′)− `(u, y)‖ ≤L`‖(u′, y′)− (u, y)‖,

for all (u, y) and (u′, y′) ∈ U × Rn.

[Problem formulation]
• Notation: for any τ ∈ [0,∞], Uτ is the set of

measurable functions from (0, τ) to U .
• State equation: for x ∈ Rn and u ∈ U∞, there is

a unique solution y[u, x] to the ODE

ẏ(t) = f(u(t), y(t)), y(0) = x,

by the theorem of Picard-Lindelöf (Cauchy-
Lipschitz).

• Cost function W , for u ∈ U∞ and x ∈ Rn:

W (u, x) =

∫ ∞
0

e−λt`
(
u(t), y[u, x](t)

)
dt.

• Optimal control problem and value function V :

V (x) = inf
u∈U∞

W (u, x). (P (x))

[Grönwall’s lemma]

Lemma 1. (Grönwall’s lemma). Let α > 0 and let
β > 0. Let θ : [0,∞) → R be a continuous function
such that

θ(t) ≤ α+ β

∫ t

0

θ(s) ds, ∀t ∈ [0,∞).

Then, θ(t) ≤ αeβt, for all t ∈ [0,∞).

Corollary 2. Let u ∈ U∞. For all x and x̃, for all t ≥ 0,
it holds:

‖y[u, x](t)− y[u, x̃](t)‖ ≤ eLf t‖x− x̃‖.
Proof. Grönwall with θ = ‖y − ỹ‖, α = ‖x − x̃‖,
β = Lf .



2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle).
Let τ > 0. Then for all x ∈ Rn, abbreviating
y = y[u, x],

V (x) = inf
u∈Uτ

(∫ τ

0

e−λt`
(
u(t), y(t)

)
dt+ e−λτV (y(τ))

)
.

(DPP )

Interpretation:
• V (x) is the value function of an optimal control

problem on the interval (0, τ).
• The original integral has been truncated:∫ ∞

τ

e−λt`
(
u(t), y(t)

)
dt ; e−λτV (y(τ)).

The term e−λτV (y(τ)) is the “optimal cost from
τ to ∞”.

[Flow property]

Lemma 4. (Flow property). Let x ∈ Rn and let u ∈
U∞. Define:
• u1 = u|(0,τ) ∈ Uτ
• u2 = u|(τ,∞) ∈ L∞(τ,∞;U)
• ũ2 ∈ U∞, ũ2(t) = u2(t+ τ).

It holds:

y[u, x](t) = y
[
ũ2, y[u1, x](τ)

]
(t− τ),

for any t ≥ τ .

Remark. After time τ , one can forget u1 and only
remember y[x, u1](τ).

[Proof]
Proof of the DP-principle. Let us denote

Ṽ (x) = inf
u∈Uτ

(∫ τ

0

e−λt`
(
u(t), y(t)

)
dt+e−λτV (y(τ))

)
.

Step 1: V ≥ Ṽ . Let u, u1, u2, and ũ2 be as in Lemma
4.

W (u, x) =

∫ ∞
0

e−λt`
(
u(t), y[u, x](t)

)
dt

=

∫ τ

0

e−λt`
(
u(t), y[u, x](t)

)
dt

+ e−λτ
∫ ∞
τ

e−λ(t−τ)`
(
u(t), y[u, x](t)

)
dt

=

∫ τ

0

e−λt`
(
u(t), y[u, x](t)

)
dt

+ e−λτ
∫ ∞
0

e−λs`
(
u(s+ τ), y[u, x](s+ τ)

)
ds.

[Proof]
We further have, for the last integral:∫ ∞

0

e−λs`
(
u(s+ τ), y[u, x](s+ τ)

)
ds

=

∫ ∞
0

e−λs`
(
ũ2(s), y[ũ2, y[u1, x](τ)](s)

)
ds

= W (ũ2, y[u1, x](τ)) ≥ V (y[u1, x](τ)).

Injecting in the above equality:

W (u, x) ≥
∫ τ

0

e−λt`
(
u1(t), y[u1, x](t)

)
dt

+ e−λτV (y[u1, x](τ))

≥ Ṽ (x).

Minimizing with respect to u yields V ≥ Ṽ .

[Proof]

Step 2 : Ṽ ≤ V . Let ε > 0. Let u1 ∈ Uτ be such that∫ τ

0

e−λt`
(
u1(t), y[u1](t)

)
dt+ e−λτV (y[u1, x](τ))

≤ Ṽ (x) + ε/2.

Let ũ2 ∈ U∞ be such that

W (ũ2, y[u1, x](τ)) ≤ V (y[u1, x](τ)) + ε/2.

Let u be defined by

u(t) =

{
u1(t) for a.e. t ∈ (0, τ),

ũ2(t− τ) for a.e. t ∈ (τ,∞).

[Proof]
The same calculation as above yields:

W (u, x) =

∫ τ

0

e−λt`
(
u1(t), y[u1, x](t)

)
dt

+ e−λτ
∫ ∞
0

e−λt`
(
ũ2(t), y[ũ2(t), y[u1, x](τ)](t)

)
dt︸ ︷︷ ︸

=W (ũ2,y[u1,x](τ)))

Therefore,

W (u, x) ≤
∫ τ

0

e−λt`
(
u1(t), y[u1, x](t)

)
dt

+ e−λτ
(
V (y[u1, x](τ)) + ε/2

)
≤ Ṽ (x) + ε.

It follows that

V (x) ≤ Ṽ (x) + ε, ∀ε > 0.

2



[Decoupling]

Corollary 5. • Let u ∈ U∞ be a solution to P (x).
Let τ > 0. Let u1 and ũ2 be defined as in Lemma
4. Then,
· u1 is optimal in the DP principle
· ũ2 is optimal for P (y[u1, x](τ)).

• Conversely: let u1 be a minimizer of (DPP ). Let
ũ2 be a solution to P (y[u1, x])(τ). Let u ∈ U∞
be defined by

u(t) =

{
u1(t) for a.e. t ∈ (0, τ)

ũ2(t− τ) for a.e. t ∈ (τ,∞).

Then u is a solution to P (x).

What can we do with the value function? If V is
known, then the DP-principle allows to decouple the
problem in time.

3. A FIRST CHARACTERIZATION OF THE VALUE
FUNCTION

[Regularity of V ]

Lemma 6. The value function V is bounded. It is also
uniformly continuous, that is, for all ε > 0, there
exists α > 0 such that for all x and x̃ ∈ Rn,

‖x̃− x‖ ≤ α =⇒ |V (x̃)− V (x)| ≤ ε.
Proof. Step 1: proof of boundedness. Let x ∈ Rn and
u ∈ U∞. We have

|W (x, u)| ≤
∫ ∞
0

e−λt‖`‖∞ dt ≤ 1

λ
‖`‖∞.

Thus |V (x)| ≤ 1
λ‖`‖∞.

[Regularity of V ]
Step 2: proof of uniform continuity. Let ε > 0. Let
α > 0. Let x and x̃ be such that ‖x̃− x‖ ≤ α, we will
specify α later. We have:

|V (x̃)− V (x)| =
∣∣ inf
u∈U∞

W (x̃, u)− inf
u∈U∞

W (x, u)
∣∣

≤ sup
u∈U∞

∣∣W (x̃, u)−W (x, u)
∣∣ ≤ ∆1 + ∆2,

where

∆1 = sup
u∈U∞

∫ τ

0

e−λt
∣∣`(u(t), ỹ(t))− `(u(t), y(t))

∣∣ dt
∆2 = sup

u∈U∞

∫ ∞
τ

e−λt
∣∣`(u(t), ỹ(t))− `(u(t), y(t))

∣∣dt,
where ỹ = y[x̃, u] and y = y[x, u] and where τ > 0 is
arbitrary.

[Regularity of V ]
• Bound of ∆1. By Corollary 2,

‖ỹ(t)−y(t)‖ ≤ eLf t‖x̃−x‖ ≤ eLfτα, ∀t ∈ [0, τ ].

Therefore, ∆1 ≤ τL`eLfτα.
• Bound of ∆2. Since ` is bounded,

∆2 ≤ 2‖`‖∞
∫ ∞
τ

e−λt dt =
2‖`‖∞
λ

e−λτ .

Conclusion: take τ > 0 sufficiently large, so that
∆2 ≤ ε

2 .
Take then α sufficiently small, so that ∆1 ≤ ε

2 .
The construction of α is independent of x and x̃.
We have |V (x)− V (x̃)| ≤ ε.

[(More) regularity of V ]

Lemma 7. We have
• if λ < Lf , then V is (λ/Lf )-Hölder continuous
• if λ = Lf , then V is α-Hölder continuous for all
α ∈ (0, 1)

• if λ > Lf , then V is Lipschitz continuous.

Exercise: prove the last statement of the lemma.

[(More) regularity of V ]
Proof of the last case. We have

|V (x̃)− V (x)|

≤ sup
u∈U∞

∫ ∞
0

e−λt|`(u(t), ỹ(t))− `(u(t), y(t))|dt

≤ sup
u∈U∞

∫ ∞
0

e−λtL`‖ỹ(t)− y(t)‖ dt

≤
∫ ∞
0

e−λtL`e
Lf t‖x̃− x‖ dt

≤ L`
λ− Lf

‖x̃− x‖.

[DP-mapping]
Notation: BUC(Rn) is the set of bounded and
uniformly continuous functions from Rn to R.

Lemma 8. The space BUC(Rn), equipped with the
uniform norm (denoted ‖ · ‖∞) is a Banach space.

Fix τ > 0. Consider the “DP-mapping”:

T : v ∈ BUC(Rn) 7→ T v ∈ BUC(Rn),

defined by

T v(x) = inf
u∈Uτ

(∫ τ

0

e−λt`(u(t), y(t)) dt+ e−λτv(y(τ))
)
,

where y = y[u, x]. Exercise: verify that T v ∈
BUC(Rn).

[DP-mapping]
Proof. Let v ∈ BUC(Rn). Let ε > 0. Let α0 > 0 be
such that

‖x̃− x‖ ≤ α0 =⇒ |v(x̃)− v(x)| ≤ ε/2.
Let α > 0. Let x and x̃ ∈ Rn be such that ‖x̃−x‖ ≤ α.
The value of α will be fixed later.
For all u ∈ Uτ , for all t ∈ [0, τ ], we have

‖y[u, x̃](t)− y[u, x](t)‖ ≤ eLf t‖x̃− x‖ ≤ eLfτα.
We have |T v(x̃)− T v(x)| ≤ ∆1 + ∆2, with...
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[DP-mapping]

∆1 = sup
u∈Uτ

∣∣∣ ∫ τ

0

e−λt`(u(t), y(t)) dt

−
∫ τ

0

e−λt`(u(t), ỹ(t)) dt
∣∣∣,

∆2 = sup
u∈Uτ

∣∣e−λτv(ỹ(τ))− e−λτv(y(τ))
∣∣.

We fix now

α = e−Lfτ min
(
α0,

ε

2τ

)
.

We have

∆1 ≤ τL`eτLfα ≤ ε/2 and ∆2 ≤ ε/2,
since ‖ỹ(τ)− y(τ)‖ ≤ eLfτα ≤ α0. Therefore,

|T v(x̃)− T v(x)| ≤ ε.

[DP-mapping]

Lemma 9. The operator T is Lipschitz continuous
with modulus e−λτ .

Proof. Let x ∈ Rn. We have

|T ṽ(x)− T v(x)| ≤
≤ sup
u∈Uτ

∣∣e−λτ ṽ(y[x, u](τ))− e−λτv(y[x, u](τ))
∣∣

≤ e−λτ‖ṽ − v‖∞.
We conclude that

‖T ṽ − T v‖∞ ≤ e−λτ‖ṽ − v‖∞.

[A characterization of V ]

Lemma 10. The value function V is the unique
solution of the fixed-point equation:

T v = v, v ∈ BUC(Rn).

Proof.
• Existence: direct consequence of the DP princi-

ple (V = T V ).
• Uniqueness: for any v such that v = T v, we have

‖v − V ‖∞ = ‖T v − T V ‖∞ ≤ e−λτ‖v − V ‖∞.
Thus v = V .

Remark: the dynamic programming principle entirely
characterises the value function!

[Min-plus linearity]
Notation. Given v1 and v2 ∈ BUC(Rn), we write
v1 ≤ v2 if v1(x) ≤ v2(x) for all x ∈ Rn. We define
min(v1, v2) ∈ BUC(Rn) by

min(v1, v2)(x) = min(v1(x), v2(x)), ∀x ∈ Rn.
Given α ∈ R, we define v1 + α by (v1 + α)(x) =
v1(x) + α.

Lemma 11. Let v1 and v2 ∈ BUC(Rn). Let α ∈ R.
The map T is monotone:

v1 ≤ v2 =⇒ T v1 ≤ T v2
and min-plus linear:

min(T v1, T v2) = T min(v1, v2),

T (v + α) = (T v) + e−λτα.

Proof: exercise.

4. HJB EQUATION: THE CLASSICAL SENSE

[Hamiltonian
We define the pre-Hamiltonian H and the Hamil-
tonian H by

H(u, x, p) = `(u, x) + 〈p, f(u, x)〉,
H(x, p) = min

u∈U
H(u, x, p).

Lemma 12. The mappingH is continuous, concave
with respect to p, and Lipschitz continuous with
respect to p with modulus ‖f‖∞.

Proof. The pre-Hamiltonian H is affine in p, thus
concave in p. As an infimum of concave functions,
H is concave. We have:

|H(x, p̃)−H(x, p)| ≤ sup
u∈U

|H(u, x, p̃)−H(u, x, p)|

≤ sup
u∈U

|〈p̃− p, f(u, x)〉| ≤ ‖p̃− p‖ · ‖f‖∞.

[Informal derivation]
Notation: C1(Rn), the set of continuously differen-
tiable functions from Rn to R.

Lemma 13. Let Φ ∈ C1(Rn). Let x ∈ Rn, let u ∈ U∞,
let y = y[u, x]. Consider the mapping:

ϕ : τ ∈ [0,∞) 7→
∫ τ

0

e−λt`(u(t), y(t)) dt

+ e−λτΦ(y(τ))− Φ(x).

Then ϕ(0) = 0 and ϕ ∈W 1,∞(0,∞) with

ϕ̇(τ) = e−λτ
(
H(u(τ), y(τ),∇Φ(y(τ)))− λΦ(y(τ))

)
.

(∗)
In particular: ϕ̇(0) = H(u(0), x,∇Φ(x))− λΦ(x) (if u
is continuous at 0).

[Informal derivation]
Proof. To simplify, we only consider the case where u
is continuous, so that y is C1 and ϕ is C1(Rn). We
have then:

ϕ̇(τ) = e−λτ `(u(τ), y(τ)) + e−λτ 〈∇Φ(y(τ)), ẏ(τ)〉
− λe−λτΦ(y(τ))

= e−λτ
[
`(u(τ), y(τ)) + 〈∇Φ(y(τ)), f(u(τ), y(τ))〉

]
− λe−λτΦ(y(τ))

= e−λτ
[
H(u(τ), y(τ),∇Φ(y(τ)))− λΦ(y(τ))

]
.

[HJB in the classical sense]

Theorem 14. Let x ∈ Rn. Assume that
• V is continuously differentiable in a neighbor-

hood of x
• P (x) has a solution ū which is continuous at time

0.
Then, λV (x)−H(x,∇V (x)) = 0,

ū(0) ∈ argmin
u0∈U

H(u0, x,∇V (x)).
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[HJB in the classical sense]
Proof. Step 1. Let u0 ∈ U , let u be the constant
control equal to u0, let y = y[u, x]. By the dynamic
programming principle, we have:

0 ≤ ϕ(τ) :=

∫ τ

0

e−λt`(u(t), y(t)) dt

+ e−λτV (y(τ))− V (x),

for all τ . Since ϕ(0) = 0, we deduce from (∗) that:

0 ≤ ϕ̇(0) = H(u0, x,∇V (x))− λV (x).

Therefore,

0 ≤ H(u0, x,∇V (x))− λV (x), ∀u0 ∈ U.

[HJB in the classical sense]
Step 2. Let us apply the dynamic programming
principle again. Redefining ϕ and setting ȳ = y[ū, x],
we obtain:

0 = ϕ(τ) :=

∫ τ

0

e−λt`(ū(t), ȳ(t)) dt

+ e−λτV (ȳ(τ))− V (x),

for all τ ≥ 0. It follows that

0 = H(ū(0), x,∇V (x))− λV (x).

Step 3. It follows that for all u0 ∈ U ,

H(ū(0), x,∇V (x)) = λV (x) ≤ H(u0, x,∇V (x)).

Therefore, H(ū(0), x,∇V (x)) = H(x,∇V (x)).

[HJB in the classical sense]

Corollary 15. Let t ≥ 0, assume that ū is continuous
in a neighborhood of t and that V is C1 in a
neighborhood of ȳ(t), where ȳ := y[ū, x](t). Then,

ū(t) ∈ argmin
u0∈U

H(u0, ȳ,∇V (ȳ)).

[HJB in the classical sense]
Remarks.
Let us define the Q-function by
Q(u, y) := H(u, y,∇V (y)), assuming that
V ∈ C1(Rn).
• If the minimizer is unique in the following rela-

tion, we have a feedback law:

ū(t) = argmin
U

Q(·, ȳ(t)).

• In some cases, one can show that ∇V (ȳ(t)) =
p(t), where p is defined by some adjoint equation
→ Pontryagin’s principle.
• In Reinforcement Learning, the approxima-

tion of Q is a central objective.

We will call the equation

λv(x)−H(x,∇v(x)) = 0, ∀x ∈ Rn (HJB)

Hamilton-Jacobi-Bellman equation, with un-
known v : Rn → R.
Remarks.
• In general V is not differentiable → in which

sense is the HJB equation to be understood?
• In Theorem 14, we have shown that

ū(t) ∈ argminH(u0, y[ū(t), x],∇V (y[ū(t), x])),

(under restrictive assumptions). We will see next
that this necessary condition is also sufficient.

Theorem 16. (Verification). Let us assume the as-
sumptions of Theorem 14 hold for all x ∈ Rn, so that
the HJB equation is satisfied in the classical
sense. Let x ∈ Rn. Assume that there exists a control
ū such that

ū(t) ∈ argmin
u0∈U

H(u0, ȳ(t),∇V (ȳ(t))),

where ȳ = y[ū, x]. Then ū is globally optimal.

Proof. Consider the function:

ϕ(τ) =

∫ τ

0

e−λt`(ū(t), ȳ(t)) dt+ e−λτV (ȳ(τ))− V (x).

We have ϕ(0) = 0. Using (∗) and Theorem 14, we
obtain:

ϕ̇(τ) = e−λτ
[
H(ū(τ), ȳ(τ),∇V (ȳ(τ))− V (ȳ(τ))

]
= e−λτ

[
H(ȳ(τ),∇V (ȳ(τ)))− V (ȳ(τ))

]
= 0.

Thus ϕ is constant, equal to 0. Its limit is given by:

0 =

∫ ∞
0

e−λt`(ū(t), ȳ(t)) dt− V (x) = W (x, ū)− V (x),

proving the optimality of ū.

5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]
We consider an abstract PDE of the form:

F(x, v(x),∇v(x)) = 0, ∀x ∈ Rn,
where F : Rn × R× Rn → R is continuous.
It contains the HJB equation with

F(x, v, p) = λv −H(x, p).

Goal of the section: showing that V is a viscosity
solution to the HJB equation.

[Sub- and super-differentials]

Definition 17. Let v : Rn → R. The following sets are
called sub- and superdifferential, respectively:

D−v(x) =

{
p ∈ Rn | lim inf

y→x

v(y)− v(x)− 〈p, y − x〉
‖y − x‖

≥ 0

}
D+v(x) =

{
p ∈ Rn | lim sup

y→x

v(y)− v(x)− 〈p, y − x〉
‖y − x‖

≤ 0

}
.

Exercise. Let v(x) = |x|. Show that D−v(0) = [−1, 1].
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[Sub- and super-differentials]
We have the following characterization.

Lemma 18. Let v : Rn → R be continuous. Let p ∈
Rn.
• p ∈ D−v(x) ⇐⇒ there exists Φ ∈ C1(Rn) such

that ∇Φ(x) = p and v−Φ has a local minimum
in x.

• p ∈ D+v(x) ⇐⇒ there exists Φ ∈ C1(Rn) such
that ∇Φ(x) = p and v−Φ has a local maximum
in x.

Proof. The implication =⇒ is admitted. The implica-
tion ⇐= is left as an exercise.

[Sub- and super-differentials]
Remark. In the above lemma, one can chose Φ(x) =
v(x) without loss of generality. Thus, we have:
• (v − Φ) has a local minimum in x ⇐⇒ v − Φ

is nonnegative in a neighborhood of x ⇐⇒ v is
locally bounded from below by Φ
• (v − Φ) has a local maximum in x ⇐⇒ v − Φ

is nonpositive in a neighborhood of x ⇐⇒ v is
locally bounded from above by Φ

Remark. If v is Fréchet differentiable at x, then the
sub- and superdifferential are equal to {∇v(x)}.

[Viscosity solutions]

Definition 19. Let v : Rn → R. We call v a viscosity
subsolution if

F(x, v(x), p) ≤ 0, ∀x ∈ Rn, ∀p ∈ D+v(x)

or, equivalently, if for all Φ ∈ C1(Rn) such that v−Φ
has a local maximum in x,

F(x, v(x),∇Φ(x)) ≤ 0.

[Viscosity solutions]

Definition 20. Let v : Rn → R. We call v a viscosity
supersolution if

F(x, v(x), p) ≥ 0, ∀p ∈ D−v(x)

or, equivalently, if for all Φ ∈ C1(Rn) such that v−Φ
has a local minimum in x,

F(x, v(x),∇Φ(x)) ≥ 0.

We call v a viscosity solution if it is a sub- and a
supersolution.

[Viscosity solutions]

Theorem 21. The value function V is a viscosity
solution of the HJB equation.

Step 1: V is a subsolution. Let x ∈ Rn, let
Φ ∈ C1(Rn) be such that V − Φ has a local
maximizer in x and V (x) = Φ(x).

We have to prove that

λv(x)−H(x,∇Φ(x)) ≤ 0.

Let u0 ∈ U , let u be the constant control equal to u0
and let y = y[u, x]. By the DPP, we have:

V (x) ≤
∫ τ

0

e−λt`(u0, y(t)) dt+ e−λτV (y(τ)).

If τ is sufficiently small, we have V (y(τ)) ≤ Φ(y(τ)).

[Viscosity solutions]
This implies that for τ sufficiently small,

0 ≤
∫ τ

0

e−λt`(u0, y(t)) dt+e−λτΦ(y(τ))−Φ(x) =: ϕ(τ).

Since ϕ(0) = 0, we deduce with (∗) that

0 ≤ ϕ̇(0) = H(u0, x,∇Φ(x))− λV (x).

Minimizing with respect to u0 ∈ U , we obtain:

0 ≤ H(x,∇Φ(x))− λV (x),

as was to be proved.

[Viscosity solutions]
Step 2: V is supersolution. Let x ∈ Rn, let Φ ∈
C1(Rn) be such that V − Φ has a local minimizer
in x and such that V (x) = Φ(x).
We have to prove that

λV (x)−H(x,∇Φ(x)) ≤ 0.

It follows from the dynamic programming principle
that for τ > 0 small enough

Φ(x) ≥

inf
u∈Uτ

∫ τ

0

e−λt`(u(t), y[x, u](t)) dt+ e−λtΦ(y[x, u](τ))︸ ︷︷ ︸
=:ϕ[u](τ)

.

[Viscosity solutions]
Thus by Lemma 13,

0 ≥ inf
u∈U∞

∫ τ

0

ϕ̇[u](t) dt

= inf
u∈U∞

∫ τ

0

e−λt
(
H(u(t), y[u](t),∇Φ(y[u](t))− λΦ(y[u](t)

)
dt

≥ inf
u∈U∞

∫ τ

0

e−λt
(
H(y[u](t),∇Φ(y[u](t))− λΦ(y[u](t)

)︸ ︷︷ ︸
=:ψ[u](t)

dt.

We have ψ[u](0) = H(x,∇Φ(x))− λV (x), in partic-
ular, ψ[u](0) does not depend on u.

[Viscosity solutions]
Let ε > 0. There exists (exercise!) τ > 0 such that

|ψ[u](t)− ψ[u](0)| ≤ ε, ∀t ∈ [0, τ ], ∀u ∈ U∞.
The previous inequality yields

0 ≥ inf
u∈U∞

∫ τ

0

(
ψ[u](0)− ε

)
dt

≥ τ(H(x,∇Φ(x))− λV (x)− ε).
Dividing by τ and sending ε to 0, we get the result.

[Viscosity solutions]

Theorem 22. (Comparison principle). Let v1 be a
subsolution to the HJB equation. Let v2 be a super-
solution to the HJB equation. Then

v1(x) ≤ v2(x), ∀x ∈ Rn.
Proof: admitted.

Corollary 23. The value function V is the unique
viscosity solution.

Proof. By the comparison principle, any viscosity
solution v is such that v ≤ V and v ≥ V .
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