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[Objectives]

e Goal: finding global solutions to optimal control
problems (in feedback form), by solving a non-
linear PDE.

e [ssues: characterization of the value function
with the Hamilton-Jacobi-Bellman equation.

[Bibliography]|
The following references are related to Lecture 3:

e M. Bardi and I. Capuzzo-Dolcetta. Optimal con-
trol and viscosity solutions of Hamilton-Jacobi-
Bellman equations. Birkhauser, 1997.

e F. Bonnans et P. Rouchon, Commande et op-
timisation de systémes dynamiques, Editions de
I’Ecole Polytechnique, 2005. (Partie 3, Chapitres
3 et 4).

[Problem formulation]
Data of the problem and assumptions:
e A parameter \ > 0.
e A non-empty and compact subset U of R™.
e A mapping f: (u,y) € U x R™ — R”, such that

I1f (o) | <11 loe
||f(u/7y/) - f(ua y)” SLf||(’u’/7 y/) - (u,y)H,
for all (u,y) and (v',y") € U x R™.
e A mapping ¢: (u,y) € U x R" — R, such that
[1€(u, ) || <111l
le(u’,y") — Lu, y)| <Lell(w',y") — (w, ),
for all (u,y) and (v',y') € U x R™.

1. INTRODUCTION

[Introduction]

e Our results so far were based on optimality
conditions (Pontryagin’s principle).

e Now: a different approach, based on dynamic
programming.
In some sense, more specific to optimal control.

e The dynamic programming principle is ubiqui-
tous in optimization. A very general concept
allowing to “split” some problems into a family
of simpler problems.

e The central tool: the value function V.

- Defined as the value of the optimization
problem, expressed as a function of the ini-
tial state.

- Characterized as the unique viscosity solu-
tion of a non-linear partial differential equa-
tion (PDE) called HJB equation.

[Problem formulation]
e Notation: for any 7 € [0,00], U, is the set of
measurable functions from (0,7) to U.
e State equation: for x € R" and u € U, there is
a unique solution y[u, z| to the ODE

gt) = f(u(®),y@), y(0)=az,
by the theorem of Picard-Lindeléf (Cauchy-
Lipschitz).
e Cost function W, for u € Uy, and z € R™:

wquAgzi/ e~ 0 (u(t), ylu, 2](t)) dt.

0

e Optimal control problem and value function V:
Vi) = inf W) (P(2))

[Gronwall’s lemma)|

Lemma 1. (Gronwall’s lemma). Let o« > 0 and let
B > 0. Let 0: [0,00) — R be a continuous function
such that

0(t) < Oz+ﬁ/0t O(s)ds, Vte|[0,00).

Then, 6(t) < aef?, for all t € [0, c0).

Corollary 2. Let u € Uy. For all x and Z, for all ¢ > 0,
it holds:

Iy, 2)(t) = ylu, Z(O] < e |lo — 2.

Proof. Gronwall with 0 = |y — g/, « = |l — Z||,
B=L;.

[Introduction]

e Interest: a globally optimal solution to the
problem can be derived from V.

o Limitation: curse of dimensionality.

e Warning: focus on a specific class of problems.
All concepts can be extended, in particular to
a stochastic framework (finance), and to other
nonlinear PDEs.




2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle).
Let 7 > 0. Then for all z € R", abbreviating
y = ylu, x|,

V(z) = inf (/ e Me(u(t), y(t)) dt—l—e_’\TV(y(T))).

ueU, 0
(DPP)
Interpretation:
e V(z) is the value function of an optimal control
problem on the interval (0, 7).
e The original integral has been truncated:

/ T e Me(u(t) y(t) dt ~

The term e~V (y(7)) is the “optimal cost from
T to co”.

[Proof]
We further have, for the last integral:

/OOO e‘ASE(u(s +7), y[u, 2](s + 7)) ds

— [ e t(aal) plaz,iur. al(0)(s)) ds
0
= W, ylu, z](7)) = V(y[us, z](7)).
Injecting in the above equality:
W (u,z) > / 0 (8), ylu, 2] (1))
0
+e NV (ylur, 2] (7))
> V().
Minimizing with respect to u yields V > V.

eV (y(7)).

[Proof]
Step 2: V < V. Let € > 0. Let u; € U, be such that

/OT e Me(ur (), y[ui](t)) dt + e MV (y[ug, 2] (7))

<V(x)+e/2.
Let 1o € U be such that
W (g, ylur, z](7)) <V (y[us, z](7)) + /2.
Let u be defined by
ult) = { w (t) forae. te (0,7),
ts(t —7) for a.e. t € (1,00).

[Flow property]
Lemma 4. (Flow property). Let © € R™ and let u €
Uso. Define:

* U1 =) €Ur

® Uy = Uj(r.00) € LF(T,00;U)

e Uy € L{OO, ﬂg(t) = ’LLQ(t +’7')
It holds:

ylu, 2)(t) = ya2, ylur, 2)()] (t - 7),

for any t > 7.
Remark. After time 7, one can forget w; and only
remember y[z, uq](7).

[Proof]
Proof of the DP-principle. Let us denote

V(x) = inf (/OT e Me(u(t),y(t)) dt—&—e_)‘TV(y(T))).

ueur

Step 1: V > V. Let u, U1, Uz, and Uy be as in Lemma
4.

W, z) = /0 e (u(t), ylu, 2](0)) dt
_ /O " Me(u(t), ylu, 2](0)) dt
- e_’\T/Tooe_A(t_T)E(u(t), ylu, ] (t)) dt
- /0 " e e(u(t), ylu, 2](0)) dt

L /Oooe_Asf(u(s+T)7y[U>$](5 +7)) ds.

[Proof]
The same calculation as above yields:

W(u,x) = /OT e M (ur(t), ylus, 2] (t)) dt

L AT /Ooo e M (tia(t), ylaa(t), ylur, 2](1)](1)) dt

—W (i g ) (7))

Therefore,

W(u,z) < /OT e MO(uy (t), ylur, z)(t)) dt




[Decoupling]
Corollary 5. e Let u € Uy be a solution to P(x).
Let 7 > 0. Let u; and 49 be defined as in Lemma
4. Then,
- up is optimal in the DP principle
- g is optimal for P(y[uq,z](7)).
e Conversely: let u; be a minimizer of (DPP). Let
2 be a solution to P(y[ui,x])(7). Let u € Uy
be defined by

) = {10
(5] (t - T)
Then u is a solution to P(x).

What can we do with the value function? If V is
known, then the DP-principle allows to decouple the
problem in time.

for a.e. t € (0,7)
for a.e. t € (1,00).

[Regularity of V]

e Bound of A;. By Corollary 2,
15—y < "t |li—z| < "7,
Therefore, A1 < 7Lee™/ .

e Bound of Ay. Since £ is bounded,

(oo}
mgmwm/ fﬁazﬂ@ﬁfM
Conclusion: take T > 0 sufficiently large, so that
Ay < 5.
Take then « sufficiently small, so that A; < 5.
The construction of « is independent of x and Z.
We have |V (z) — V()| <e.

vt € [0,7].

3. A FIRST CHARACTERIZATION OF THE VALUE
FUNCTION

[(More) regularity of V]
Lemma 7. We have
o if \ < Ly, then V is (A/L)-Holder continuous
o if A= Ly, then V is a-Holder continuous for all
ae(0,1)
e if A > L¢, then V is Lipschitz continuous.

Ezercise: prove the last statement of the lemma.

[Regularity of V]
Lemma 6. The value function V' is bounded. It is also

uniformly continuous, that is, for all € > 0, there
exists o > 0 such that for all x and £ € R",

|2 —z|]| <a= |V (Z) — V(x)| < e.
Proof. Step 1: proof of boundedness. Let x € R™ and
u € Us. We have

° 1
W) < [ e lldt < 6]
0

Thus [V(2)] < 41€].

[(More) regularity of V]
Proof of the last case. We have

V(@) = V()]
< sup/0 e Me(ult), §(t)) — £(u(t), y(1))] dt

< sup / e MLy () — (b)) dt
UEU 0

o0

g/ M Loelrt 7 — x| dt
0
L, .

< — .

< 52l -

[Regularity of V]

Step 2: proof of uniform continuity. Let ¢ > 0. Let
a > 0. Let x and Z be such that ||z — z| < a, we will
specify « later. We have:

V(z)-V(x)| = ’ulerzlfffw W (&, u) — inf W(z,u)

UEUo
< sSup |W(£vu) - W(x,u)| < A1 +A27
UEUo
where
Bo= sup [ M eue)a(0) - ), p(o)]
uelss JO

Bo= s [N e, 50) ~ ) y(0))|

UEUso
where § = y[Z,u] and y = y[x, u] and where 7 > 0 is
arbitrary.

[DP-mapping]
Notation: BUC(R™) is the set of bounded and
uniformly continuous functions from R™ to R.

Lemma 8. The space BUC(R™), equipped with the
uniform norm (denoted || - ||) is @ Banach space.

Fix 7 > 0. Consider the “DP-mapping”:
T:ve BUCR") — Tv e BUC(R™),
defined by
Tv(z) = inf (/ e M(u(t), y(t)) dt+€7>\T’U(y(T))),
ueU, 0

where y = ylu,x]. Ezercise: verify that Tv €
BUC(R™).

[DP-mapping]
Proof. Let v € BUC(R™). Let € > 0. Let a9 > 0 be
such that

13 — 2]l < ap = [0(F) — v(z)| < £/2.
Let a > 0. Let z and & € R™ be such that || z—z| < a.

The value of a will be fixed later.
For all u € U,, for all t € [0, 7], we have

lylu, 2)(t) — ylu, 2] ()] < e™*)7 - z|| < "' 7a.
We have |Tv(Z) — To(z)] < Ay + Ag, with...




[DP-mapping]

A= sup | /O " oMot y(t)) dt

ueEU,

b

- /0 " e Mp(u(t), §t)) dt

Ay = sup e Mo(G(7)) — e Mo(y(r))|.
uEU,

We fix now

a=e 5 min (ag, i)
27
We have
A <71Lee™a < /2 and Ag <e/2,
since ||5(7) — y(7)|| < /" < ag. Therefore,

|Tv(@) — To(z)] <e.

4. HJIB EQUATION: THE CLASSICAL SENSE

[DP-mapping]
Lemma 9. The operator 7T is Lipschitz continuous
with modulus e =7,
Proof. Let x € R™. We have
|To(x) — To(z)| <
< sup [e M o(ylw, u)(r)) — e N o(ylz, u](7))]

u€ly
< 5 = vlloe.
We conclude that
175 — Tolloe < e D — 0|00

[Hamiltonian
We define the pre-Hamiltonian H and the Hamil-
tonian H by
H(u,z,p) = l(u,z) + (p, f(u,x)),
H(z,p) = min H(u,z,p).
ue

Lemma 12. The mapping H is continuous, concave
with respect to p, and Lipschitz continuous with
respect to p with modulus || f||eo-

Proof. The pre-Hamiltonian H is affine in p, thus
concave in p. As an infimum of concave functions,
‘H is concave. We have:

|H(x,p) — H(z,p)| < sug |H (u, z,p) — H(u,z,p)]
ue

<sup [(p—p, flu,z)| < Ip—pl [ flloe-
uelU

[A characterization of V]

Lemma 10. The value function V is the unique
solution of the fixed-point equation:

Tv=v, ve&BUCR").

Proof.
e Existence: direct consequence of the DP princi-
ple (V =TV).

e Uniqueness: for any v such that v = T v, we have
[ = Voo = 1Tv = TV]loo < e [0 = Vl|ox.
Thus v =V.
Remark: the dynamic programming principle entirely
characterises the value function!

[Informal derivation]
Notation: C*(R™), the set of continuously differen-
tiable functions from R™ to R.

Lemma 13. Let ® € CH(R"). Let z € R™, let u € Us,
let y = y[u, z]. Consider the mapping:

w: 7 € [0,00) »—>/OT e MO(u(t), y(t)) dt

+ e MO(y(1)) — ().
Then ¢(0) = 0 and p € W1>°(0, 00) with
p(r) = e (H(u(r), y(7), VE(y(r))) — A8 (y(7))).

(%)
In particular: ¢(0) = H(u(0),z, V®(z)) — A\®(x) (if u
is continuous at 0).

[Min-plus linearity]
Notation. Given v; and ve € BUC(R™), we write
vy <wvg if v1(z) < va(z) for all z € R™. We define
min(vy,v9) € BUC(R™) by
min(vy, v2)(x) = min(vy(z),v2(x)), Ve eR™
Given a € R, we define v; +a by (vi + a)(z) =
vi(x) + a.
Lemma 11. Let vy and vo € BUC(R™). Let o € R.
The map 7 is monotone:
v v = Tv < Twa

and min-plus linear:

min(7 vy, Tvz) = T min(vy, v2),

Tw+a)=(Tv)+e Ma.

Proof: exercise.

[Informal derivation]

Proof. To simplify, we only consider the case where u
is continuous, so that y is C! and ¢ is C*(R™). We
have then:

(1) = e TU(u(r), y(7)) + e A (VO(y(7)), (7))
= Ae T R(y())

= ¢ [t(u(r), y(r) + (VO(y(r)), f(u(r), y(1)))]
— )\ef)‘T‘I)(y(T))

= T [H(u(r), y(r), VO((r)) ~ AB(y(r)]:

[HJIB in the classical sense]

Theorem 1. Let x € R™. Assume that
e I/ is continuously differentiable in a neighbor-
hood of z
e P(z) has a solution % which is continuous at time
0.
Then, AV(z) — H(z,VV(z)) =0,
@(0) € argmin H (ug,x, VV (z)).
ugelU




[HJB in the classical sense]

Proof. Step 1. Let ug € U, let u be the constant
control equal to ug, let y = y[u, x]. By the dynamic
programming principle, we have:

0< p(r) = / "N U(u(t), y(1)) dt

+e MV (y(r)) = V()
for all 7. Since p(0) = 0, we deduce from (x) that:
0 < (0) = H(ug, z, VV(x)) — AV ().
Therefore,
0 < H(ug,z,VV(x)) — AV(z), YuoeU.

We will call the equation
A(z) — H(z,Vou(z)) =0, VYoeR" (HIB)
Hamilton-Jacobi-Bellman equation, with un-
known v: R” — R.
Remarks.
e In general V is not differentiable — in which
sense is the HJB equation to be understood?
e In Theorem 14, we have shown that

a(t) € argmin H (uo, yla(t), 2], YV (yla(t), 2])),
(under restrictive assumptions). We will see next
that this necessary condition is also sufficient.

[HJIB in the classical sense]

Step 2. Let us apply the dynamic programming
principle again. Redefining ¢ and setting § = y[u, z],
we obtain:

0= () = / "N a(a(e), g(0)) di

+ eV () - V@),
for all 7 > 0. It follows that
0= H(a(0),z,VV(z)) — A\V(x).
Step 8. It follows that for all ug € U,
H(u(0),z,VV(z)) = A\V(z) < H(up,z, VV(x)).
Therefore, H(@(0),z, VV(x)) = H(z, VV (z)).

Theorem 16. (Verification). Let us assume the as-
sumptions of Theorem 14 hold for all x € R™, so that
the HIB equation is satisfied in the classical
sense. Let © € R™. Assume that there exists a control
u such that
a(t) € argmin H (ug, y(t), VV (g(t))),
upg€eU

where § = y[u, z]. Then @ is globally optimal.

[HJB in the classical sense]

Corollary 15. Let t > 0, assume that @ is continuous

in a neighborhood of ¢ and that V is C! in a

neighborhood of §(t), where g := y[u, x](t). Then,
a(t) € argmin H(ug,y, VV ()).

ugelU

[HJIB in the classical sense]
Remarks.
Let us define the
Qu,y) == H(u,y, VV(y)),
V e CHR").
e If the minimizer is unique in the following rela-
tion, we have a feedback law:

a(t) = argmin Q(, 5(t)).
U

Q-function by
assuming that

e In some cases, one can show that VV (g(t)) =
p(t), where p is defined by some adjoint equation
— Pontryagin’s principle.

e In Reinforcement Learning, the approxima-
tion of () is a central objective.

Proof. Consider the function:
o) = [ a0, 50) dt+ V) - Vo)

We have ¢(0) =0. Using (*) and Theorem 14, we
obtain:

G(r) = e M [H(u(r),y(1), VV (5(7)) = V(5(7))]
= e M[H((T), YV (5(7))) — V(5(r))]

Thus ¢ is constant, equal to 0. Its limit is given by:
0= [ e Neta(e) 5) dt - Viz) = Wa ) - V(a),
0

proving the optimality of u.

5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]
We consider an abstract PDE of the form:

F(z,v(z),Vu(z)) =0, VzreR",
where F: R” x R x R — R is continuous.
It contains the HJB equation with
F(z,v,p) = v —H(z,p).
Goal of the section: showing that V is a viscosity
solution to the HJB equation.

[Sub- and super-differentials]
Definition 17. Let v: R™ — R. The following sets are
called sub- and superdifferential, respectively:

D_v(z) — {P c R"Himinf U(y) — v(m) — <p’y — (E> > 0}

y—z lly — =]
D+’U(I) — {p cR® I lim sup v(y) — ’U($) — (pvy - $> < 0}
y—x Ily_xll

Ezercise. Let v(x) = |z|. Show that D~ v(0) = [-1,1].




[Sub- and super-differentials]
We have the following characterization.

Lemma 18. Let v: R™ — R be continuous. Let p €
R™.
e p € D v(x) <= there exists ® € C'(R") such
that V®(x) = p and v — ® has a local minimum
in .
e p € DY y(x) <= there exists ® € C1(R") such
that V®(z) = p and v — ® has a local maximum
in z.
Proof. The implication = is admitted. The implica-
tion <= is left as an exercise.

[Viscosity solutions]
This implies that for 7 sufficiently small,

0< / e, y(1)) di+e > B(y(r)) () =: (7).
0
Since ¢(0) = 0, we deduce with () that
0 < ¢(0) = H(ug,z,VO(z)) — AV ().
Minimizing with respect to ug € U, we obtain:
0 <H(x,VO(x)) — \V(z),
as was to be proved.

[Sub- and super-differentials]
Remark. In the above lemma, one can chose ®(x) =
v(x) without loss of generality. Thus, we have:

e (v — @) has a local minimum in z <= v — @
is nonnegative in a neighborhood of x <= v is
locally bounded from below by ®

e (v — @) has a local maximum in z <= v — @
is nonpositive in a neighborhood of x < v is
locally bounded from above by ®

Remark. If v is Fréchet differentiable at x, then the
sub- and superdifferential are equal to {Vuv(z)}.

[Viscosity solutions]

Definition 19. Let v: R™ — R. We call v a viscosity
subsolution if

F(z,v(z),p) <0, Vo €R", Vpec DTv(x)

or, equivalently, if for all ® € C'(R") such that v — ®
has a local maximum in z,

Flz,v(z), VO(z)) <0.

[Viscosity solutions]

Step 2: V is supersolution. Let x € R", let ® €
C1(R™) be such that V — ® has a local minimizer
in z and such that V(z) = ®(z).

We have to prove that

AV (z) — H(z, VO(z)) < 0.
It follows from the dynamic programming principle
that for 7 > 0 small enough

d(x) >

uiéli /OT e_’\tﬂ(u(t), ylx,u] () dt + 6_’\t‘1)(y[$, ul(7)) .

=:plu](T)

[Viscosity solutions]
Definition 20. Let v: R™ — R. We call v a viscosity
supersolution if

F(x,v(x),p) >0, Vpe D v(x)
or, equivalently, if for all ® € C*(R"™) such that v — ®
has a local minimum in z,

F(z,v(x), VO(x)) > 0.

We call v a viscosity solution if it is a sub- and a
supersolution.

[Viscosity solutions]
Thus by Lemma 13,

0> inf /T Plul(t) de
0

UEU

UEUo

= inf / e M (H(u(t), ylul (t), VO(ylul (t)) — AP (y[u](t)) dt
0

\%

> it / M (H(ylu)(), VB(y[u)(1)) — AD(ylu] (1)) dt.
UEU~ 0
=:plu](t)

We have 9¥[u](0) = H(z, V®(x)) — AV (z), in partic-
ular, 9[u](0) does not depend on u.

[Viscosity solutions]

Theorem 21. The value function V is a viscosity
solution of the HJB equation.

Step 1: V is a subsolution. Let x € R", let
® € CYR") be such that V — ® has a local
maximizer in x and V() = ®(x).

We have to prove that

M(z) — H(z, VO(x)) < 0.
Let ug € U, let u be the constant control equal to ug
and let y = y[u, x]. By the DPP, we have:

Vi) < / "M (g, (1)) dt + e NV (y(r)).

If 7 is sufficiently small, we have V(y(7)) < ®(y(7)).

[Viscosity solutions]
Let € > 0. There exists (exercise!) 7 > 0 such that

[[u](t) = P[u](0)] <&, Vte[0,7], YVu € Us.
The previous inequality yields
0> inf / (0[] 0) — ) dt
0

UEU
> 7(H(z, VO(x)) — AV (z) — ).
Dividing by 7 and sending ¢ to 0, we get the result.

[Viscosity solutions]

Theorem 22. (Comparison principle). Let v; be a
subsolution to the HJB equation. Let vy be a super-
solution to the HJB equation. Then

v1(z) <wsg(x), VreR".
Proof: admitted.

Corollary 23. The value function V is the unique
viscosity solution.

Proof. By the comparison principle, any viscosity
solution v is such that v <V and v > V.




