SOD 311 - Lecture 3: HJB equation and viscosity solutions

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

[Objectives]

- Goal: finding global solutions to optimal control problems (in feedback form), by solving a nonlinear PDE.
- Issues: characterization of the value function with the Hamilton-Jacobi-Bellman equation.

[Bibliography]

The following references are related to Lecture 3:

- M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-JacobiBellman equations. Birkhäuser, 1997.
- F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitres 3 et 4).

1. INTRODUCTION

[Introduction]

- Our results so far were based on optimality conditions (Pontryagin's principle).
- Now: a different approach, based on dynamic programming.
In some sense, more specific to optimal control.
- The dynamic programming principle is ubiquitous in optimization. A very general concept allowing to "split" some problems into a family of simpler problems.
- The central tool: the value function V.
- Defined as the value of the optimization problem, expressed as a function of the initial state.
Characterized as the unique viscosity solution of a non-linear partial differential equation (PDE) called HJB equation.

[Problem formulation]

Data of the problem and assumptions:

- A parameter $\lambda>0$.
- A non-empty and compact subset U of \mathbb{R}^{m}.
- A mapping $f:(u, y) \in U \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
\|f(u, y)\| \leq\|f\|_{\infty}
$$

$$
\left\|f\left(u^{\prime}, y^{\prime}\right)-f(u, y)\right\| \leq L_{f}\left\|\left(u^{\prime}, y^{\prime}\right)-(u, y)\right\|,
$$

for all (u, y) and $\left(u^{\prime}, y^{\prime}\right) \in U \times \mathbb{R}^{n}$.

- A mapping $\ell:(u, y) \in U \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, such that

$$
\begin{aligned}
\|\ell(u, y)\| & \leq\|\ell\|_{\infty}, \\
\left\|\ell\left(u^{\prime}, y^{\prime}\right)-\ell(u, y)\right\| & \leq L_{\ell}\left\|\left(u^{\prime}, y^{\prime}\right)-(u, y)\right\|,
\end{aligned}
$$

for all (u, y) and $\left(u^{\prime}, y^{\prime}\right) \in U \times \mathbb{R}^{n}$.

[Problem formulation]

- Notation: for any $\tau \in[0, \infty], \mathcal{U}_{\tau}$ is the set of measurable functions from $(0, \tau)$ to U.
- State equation: for $x \in \mathbb{R}^{n}$ and $u \in \mathcal{U}_{\infty}$, there is a unique solution $y[u, x]$ to the ODE

$$
\dot{y}(t)=f(u(t), y(t)), \quad y(0)=x
$$

by the theorem of Picard-Lindelöf (CauchyLipschitz).

- Cost function W, for $u \in \mathcal{U}_{\infty}$ and $x \in \mathbb{R}^{n}$:

$$
W(u, x)=\int_{0}^{\infty} e^{-\lambda t} \ell(u(t), y[u, x](t)) \mathrm{d} t .
$$

- Optimal control problem and value function V :

$$
V(x)=\inf _{u \in \mathcal{U}_{\infty}} W(u, x) . \quad(P(x))
$$

[Grönwall's lemma]

Lemma 1. (Grönwall's lemma). Let $\alpha>0$ and let $\beta>0$. Let $\theta:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function such that

$$
\theta(t) \leq \alpha+\beta \int_{0}^{t} \theta(s) \mathrm{d} s, \quad \forall t \in[0, \infty)
$$

Then, $\theta(t) \leq \alpha e^{\beta t}$, for all $t \in[0, \infty)$.
Corollary 2. Let $u \in \mathcal{U}_{\infty}$. For all x and \tilde{x}, for all $t \geq 0$, it holds:

$$
\|y[u, x](t)-y[u, \tilde{x}](t)\| \leq e^{L_{f} t}\|x-\tilde{x}\| .
$$

Proof. Grönwall with $\theta=\|y-\tilde{y}\|, \alpha=\|x-\tilde{x}\|$, $\beta=L_{f}$.

[Introduction]

- Interest: a globally optimal solution to the problem can be derived from V.
- Limitation: curse of dimensionality.
- Warning: focus on a specific class of problems. All concepts can be extended, in particular to a stochastic framework (finance), and to other nonlinear PDEs.

2. DYNAMIC PROGRAMMING PRINCIPLE

[Dynamic programming principle]

Theorem 3. (Dynamic programming (DP) principle).
Let $\tau>0$. Then for all $x \in \mathbb{R}^{n}$, abbreviating $y=y[u, x]$,
$V(x)=\inf _{u \in \mathcal{U}_{\tau}}\left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t+e^{-\lambda \tau} V(y(\tau))\right)$.

Interpretation:

- $V(x)$ is the value function of an optimal control problem on the interval $(0, \tau)$.
- The original integral has been truncated:

$$
\int_{\tau}^{\infty} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t \quad \leadsto \quad e^{-\lambda \tau} V(y(\tau))
$$

The term $e^{-\lambda \tau} V(y(\tau))$ is the "optimal cost from τ to ∞ ".

[Flow property]

Lemma 4. (Flow property). Let $x \in \mathbb{R}^{n}$ and let $u \in$ \mathcal{U}_{∞}. Define:

- $u_{1}=u_{\mid(0, \tau)} \in \mathcal{U}_{\tau}$
- $u_{2}=u_{\mid(\tau, \infty)} \in L^{\infty}(\tau, \infty ; U)$
- $\tilde{u}_{2} \in \mathcal{U}_{\infty}, \tilde{u}_{2}(t)=u_{2}(t+\tau)$.

It holds:

$$
y[u, x](t)=y\left[\tilde{u}_{2}, y\left[u_{1}, x\right](\tau)\right](t-\tau)
$$

for any $t \geq \tau$.
Remark. After time τ, one can forget u_{1} and only remember $y\left[x, u_{1}\right](\tau)$.

[Proof]

Proof of the DP-principle. Let us denote
$\tilde{V}(x)=\inf _{u \in \mathcal{U}_{\tau}}\left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t+e^{-\lambda \tau} V(y(\tau))\right)$.
Step 1: $V \geq \tilde{V}$. Let u, u_{1}, u_{2}, and \tilde{u}_{2} be as in Lemma 4.

$$
\begin{aligned}
& W(u, x)=\int_{0}^{\infty} e^{-\lambda t} \ell(u(t), y[u, x](t)) \mathrm{d} t \\
&= \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[u, x](t)) \mathrm{d} t \\
&+e^{-\lambda \tau} \int_{\tau}^{\infty} e^{-\lambda(t-\tau)} \ell(u(t), y[u, x](t)) \mathrm{d} t \\
&= \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[u, x](t)) \mathrm{d} t \\
&+e^{-\lambda \tau} \int_{0}^{\infty} e^{-\lambda s} \ell(u(s+\tau), y[u, x](s+\tau)) \mathrm{d} s .
\end{aligned}
$$

[Proof]
We further have, for the last integral:

$$
\begin{aligned}
\int_{0}^{\infty} & e^{-\lambda s} \ell(u(s+\tau), y[u, x](s+\tau)) \mathrm{d} s \\
& =\int_{0}^{\infty} e^{-\lambda s} \ell\left(\tilde{u}_{2}(s), y\left[\tilde{u}_{2}, y\left[u_{1}, x\right](\tau)\right](s)\right) \mathrm{d} s \\
& =W\left(\tilde{u}_{2}, y\left[u_{1}, x\right](\tau)\right) \geq V\left(y\left[u_{1}, x\right](\tau)\right) .
\end{aligned}
$$

Injecting in the above equality:

$$
\begin{aligned}
W(u, x) \geq & \int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{1}(t), y\left[u_{1}, x\right](t)\right) \mathrm{d} t \\
& \quad+e^{-\lambda \tau} V\left(y\left[u_{1}, x\right](\tau)\right) \\
\geq & \tilde{V}(x)
\end{aligned}
$$

Minimizing with respect to u yields $V \geq \tilde{V}$.

[Proof]

Step 2: $\tilde{V} \leq V$. Let $\varepsilon>0$. Let $u_{1} \in \mathcal{U}_{\tau}$ be such that

$$
\begin{aligned}
& \int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{1}(t), y\left[u_{1}\right](t)\right) \mathrm{d} t+e^{-\lambda \tau} V\left(y\left[u_{1}, x\right](\tau)\right) \\
& \quad \leq \tilde{V}(x)+\varepsilon / 2
\end{aligned}
$$

Let $\tilde{u}_{2} \in \mathcal{U}_{\infty}$ be such that

$$
W\left(\tilde{u}_{2}, y\left[u_{1}, x\right](\tau)\right) \leq V\left(y\left[u_{1}, x\right](\tau)\right)+\varepsilon / 2 .
$$

Let u be defined by

$$
u(t)=\left\{\begin{array}{cl}
u_{1}(t) & \text { for a.e. } t \in(0, \tau), \\
\tilde{u}_{2}(t-\tau) & \text { for a.e. } t \in(\tau, \infty) .
\end{array}\right.
$$

[Proof]

The same calculation as above yields:

$$
\begin{aligned}
& W(u, x)=\int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{1}(t), y\left[u_{1}, x\right](t)\right) \mathrm{d} t \\
& \quad+e^{-\lambda \tau} \underbrace{\int_{0}^{\infty} e^{-\lambda t} \ell\left(\tilde{u}_{2}(t), y\left[\tilde{u}_{2}(t), y\left[u_{1}, x\right](\tau)\right](t)\right) \mathrm{d} t}_{\left.=W\left(\tilde{u}_{2}, y\left[u_{1}, x\right](\tau)\right)\right)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W(u, x) \leq & \int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{1}(t), y\left[u_{1}, x\right](t)\right) \mathrm{d} t \\
& \quad+e^{-\lambda \tau}\left(V\left(y\left[u_{1}, x\right](\tau)\right)+\varepsilon / 2\right) \\
\leq & \tilde{V}(x)+\varepsilon
\end{aligned}
$$

It follows that

$$
V(x) \leq \tilde{V}(x)+\varepsilon, \quad \forall \varepsilon>0
$$

[Decoupling]

Corollary 5. - Let $u \in \mathcal{U}_{\infty}$ be a solution to $P(x)$.
Let $\tau>0$. Let u_{1} and \tilde{u}_{2} be defined as in Lemma
4. Then,

- u_{1} is optimal in the DP principle
- \tilde{u}_{2} is optimal for $P\left(y\left[u_{1}, x\right](\tau)\right)$.
- Conversely: let u_{1} be a minimizer of $(D P P)$. Let \tilde{u}_{2} be a solution to $P\left(y\left[u_{1}, x\right]\right)(\tau)$. Let $u \in \mathcal{U}_{\infty}$ be defined by

$$
u(t)= \begin{cases}u_{1}(t) & \text { for a.e. } t \in(0, \tau) \\ \tilde{u}_{2}(t-\tau) & \text { for a.e. } t \in(\tau, \infty)\end{cases}
$$

Then u is a solution to $P(x)$.
What can we do with the value function? If V is known, then the DP-principle allows to decouple the problem in time.

3. A FIRST CHARACTERIZATION OF THE VALUE FUNCTION

[Regularity of V]

Lemma 6. The value function V is bounded. It is also uniformly continuous, that is, for all $\varepsilon>0$, there exists $\alpha>0$ such that for all x and $\tilde{x} \in \mathbb{R}^{n}$,

$$
\|\tilde{x}-x\| \leq \alpha \Longrightarrow|V(\tilde{x})-V(x)| \leq \varepsilon
$$

Proof. Step 1: proof of boundedness. Let $x \in \mathbb{R}^{n}$ and $u \in \mathcal{U}_{\infty}$. We have

$$
|W(x, u)| \leq \int_{0}^{\infty} e^{-\lambda t}\|\ell\|_{\infty} \mathrm{d} t \leq \frac{1}{\lambda}\|\ell\|_{\infty}
$$

Thus $|V(x)| \leq \frac{1}{\lambda}\|\ell\|_{\infty}$.

[Regularity of V]

Step 2: proof of uniform continuity. Let $\varepsilon>0$. Let $\alpha>0$. Let x and \tilde{x} be such that $\|\tilde{x}-x\| \leq \alpha$, we will specify α later. We have:

$$
\begin{gathered}
|V(\tilde{x})-V(x)|=\left|\inf _{u \in \mathcal{U}_{\infty}} W(\tilde{x}, u)-\inf _{u \in \mathcal{U}_{\infty}} W(x, u)\right| \\
\quad \leq \sup _{u \in \mathcal{U}_{\infty}}|W(\tilde{x}, u)-W(x, u)| \leq \Delta_{1}+\Delta_{2}
\end{gathered}
$$

where

$$
\begin{aligned}
& \Delta_{1}=\sup _{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} e^{-\lambda t}|\ell(u(t), \tilde{y}(t))-\ell(u(t), y(t))| \mathrm{d} t \\
& \Delta_{2}=\sup _{u \in \mathcal{U}_{\infty}} \int_{\tau}^{\infty} e^{-\lambda t}|\ell(u(t), \tilde{y}(t))-\ell(u(t), y(t))| \mathrm{d} t
\end{aligned}
$$ where $\tilde{y}=y[\tilde{x}, u]$ and $y=y[x, u]$ and where $\tau>0$ is arbitrary.

[Regularity of V]

- Bound of Δ_{1}. By Corollary 2,
$\|\tilde{y}(t)-y(t)\| \leq e^{L_{f} t}\|\tilde{x}-x\| \leq e^{L_{f} \tau} \alpha, \quad \forall t \in[0, \tau]$.
Therefore, $\Delta_{1} \leq \tau L_{\ell} e^{L_{f} \tau} \alpha$.
- Bound of Δ_{2}. Since ℓ is bounded,

$$
\Delta_{2} \leq 2\|\ell\|_{\infty} \int_{\tau}^{\infty} e^{-\lambda t} \mathrm{~d} t=\frac{2\|\ell\|_{\infty}}{\lambda} e^{-\lambda \tau}
$$

Conclusion: take $\tau>0$ sufficiently large, so that $\Delta_{2} \leq \frac{\varepsilon}{2}$.
Take then α sufficiently small, so that $\Delta_{1} \leq \frac{\varepsilon}{2}$.
The construction of α is independent of x and \tilde{x}.
We have $|V(x)-V(\tilde{x})| \leq \varepsilon$.

[(More) regularity of V]

Lemma 7. We have

- if $\lambda<L_{f}$, then V is $\left(\lambda / L_{f}\right)$-Hölder continuous
- if $\lambda=L_{f}$, then V is α-Hölder continuous for all $\alpha \in(0,1)$
- if $\lambda>L_{f}$, then V is Lipschitz continuous.

Exercise: prove the last statement of the lemma.
[(More) regularity of V]
Proof of the last case. We have
$|V(\tilde{x})-V(x)|$
$\leq \sup _{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t}|\ell(u(t), \tilde{y}(t))-\ell(u(t), y(t))| \mathrm{d} t$
$\leq \sup _{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} L_{\ell}\|\tilde{y}(t)-y(t)\| \mathrm{d} t$
$\leq \int_{0}^{\infty} e^{-\lambda t} L_{\ell} e^{L_{f} t}\|\tilde{x}-x\| \mathrm{d} t$

$$
\leq \frac{L_{\ell}}{\lambda-L_{f}}\|\tilde{x}-x\|
$$

[DP-mapping]

Notation: $B U C\left(\mathbb{R}^{n}\right)$ is the set of bounded and uniformly continuous functions from \mathbb{R}^{n} to \mathbb{R}.
Lemma 8. The space $B U C\left(\mathbb{R}^{n}\right)$, equipped with the uniform norm (denoted $\|\cdot\|_{\infty}$) is a Banach space.
Fix $\tau>0$. Consider the "DP-mapping":

$$
\mathcal{T}: v \in B U C\left(\mathbb{R}^{n}\right) \mapsto \mathcal{T} v \in B U C\left(\mathbb{R}^{n}\right)
$$

defined by
$\mathcal{T} v(x)=\inf _{u \in \mathcal{U}_{\tau}}\left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t+e^{-\lambda \tau} v(y(\tau))\right)$, where $y=y[u, x]$. Exercise: verify that $\mathcal{T} v \in$ $B U C\left(\mathbb{R}^{n}\right)$.

[DP-mapping]

Proof. Let $v \in B U C\left(\mathbb{R}^{n}\right)$. Let $\varepsilon>0$. Let $\alpha_{0}>0$ be such that

$$
\|\tilde{x}-x\| \leq \alpha_{0} \Longrightarrow|v(\tilde{x})-v(x)| \leq \varepsilon / 2 .
$$

Let $\alpha>0$. Let x and $\tilde{x} \in \mathbb{R}^{n}$ be such that $\|\tilde{x}-x\| \leq \alpha$. The value of α will be fixed later.
For all $u \in U_{\tau}$, for all $t \in[0, \tau]$, we have

$$
\|y[u, \tilde{x}](t)-y[u, x](t)\| \leq e^{L_{f} t}\|\tilde{x}-x\| \leq e^{L_{f} \tau} \alpha
$$

We have $|\mathcal{T} v(\tilde{x})-\mathcal{T} v(x)| \leq \Delta_{1}+\Delta_{2}$, with...

[DP-mapping]

$$
\begin{aligned}
& \begin{aligned}
\Delta_{1}= & \sup _{u \in \mathcal{U}_{\tau}} \mid \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t \\
& \quad-\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), \tilde{y}(t)) \mathrm{d} t \mid \\
\Delta_{2}= & \sup _{u \in \mathcal{U}_{\tau}}\left|e^{-\lambda \tau} v(\tilde{y}(\tau))-e^{-\lambda \tau} v(y(\tau))\right| .
\end{aligned} .
\end{aligned}
$$

We fix now

$$
\alpha=e^{-L_{f} \tau} \min \left(\alpha_{0}, \frac{\varepsilon}{2 \tau}\right) .
$$

We have

$$
\Delta_{1} \leq \tau L_{\ell} e^{\tau L_{f}} \alpha \leq \varepsilon / 2 \quad \text { and } \quad \Delta_{2} \leq \varepsilon / 2
$$

since $\|\tilde{y}(\tau)-y(\tau)\| \leq e^{L_{f} \tau} \alpha \leq \alpha_{0}$. Therefore,

$$
|\mathcal{T} v(\tilde{x})-\mathcal{T} v(x)| \leq \varepsilon
$$

[DP-mapping]

Lemma 9. The operator \mathcal{T} is Lipschitz continuous with modulus $e^{-\lambda \tau}$.
Proof. Let $x \in \mathbb{R}^{n}$. We have

$$
\begin{aligned}
& |\mathcal{T} \tilde{v}(x)-\mathcal{T} v(x)| \leq \\
& \quad \leq \sup _{u \in \mathcal{U}_{\tau}}\left|e^{-\lambda \tau} \tilde{v}(y[x, u](\tau))-e^{-\lambda \tau} v(y[x, u](\tau))\right| \\
& \quad \leq e^{-\lambda \tau}\|\tilde{v}-v\|_{\infty} .
\end{aligned}
$$

We conclude that

$$
\|\mathcal{T} \tilde{v}-\mathcal{T} v\|_{\infty} \leq e^{-\lambda \tau}\|\tilde{v}-v\|_{\infty}
$$

[A characterization of V]

Lemma 10. The value function V is the unique solution of the fixed-point equation:

$$
\mathcal{T} v=v, \quad v \in B U C\left(\mathbb{R}^{n}\right)
$$

Proof.

- Existence: direct consequence of the DP principle $(V=\mathcal{T} V)$.
- Uniqueness: for any v such that $v=\mathcal{T} v$, we have $\|v-V\|_{\infty}=\|\mathcal{T} v-\mathcal{T} V\|_{\infty} \leq e^{-\lambda \tau}\|v-V\|_{\infty}$. Thus $v=V$.
Remark: the dynamic programming principle entirely characterises the value function!

[Min-plus linearity]

Notation. Given v_{1} and $v_{2} \in B U C\left(\mathbb{R}^{n}\right)$, we write $v_{1} \leq v_{2}$ if $v_{1}(x) \leq v_{2}(x)$ for all $x \in \mathbb{R}^{n}$. We define $\min \left(v_{1}, v_{2}\right) \in B U C\left(\mathbb{R}^{n}\right)$ by
$\min \left(v_{1}, v_{2}\right)(x)=\min \left(v_{1}(x), v_{2}(x)\right), \quad \forall x \in \mathbb{R}^{n}$.
Given $\alpha \in \mathbb{R}$, we define $v_{1}+\alpha$ by $\left(v_{1}+\alpha\right)(x)=$ $v_{1}(x)+\alpha$.
Lemma 11. Let v_{1} and $v_{2} \in B U C\left(\mathbb{R}^{n}\right)$. Let $\alpha \in \mathbb{R}$. The map \mathcal{T} is monotone:

$$
v_{1} \leq v_{2} \Longrightarrow \mathcal{T} v_{1} \leq \mathcal{T} v_{2}
$$

and min-plus linear:

$$
\begin{aligned}
\min \left(\mathcal{T} v_{1}, \mathcal{T} v_{2}\right) & =\mathcal{T} \min \left(v_{1}, v_{2}\right), \\
\mathcal{T}(v+\alpha) & =(\mathcal{T} v)+e^{-\lambda \tau} \alpha .
\end{aligned}
$$

Proof: exercise.

[Hamiltonian

We define the pre-Hamiltonian H and the Hamiltonian \mathcal{H} by

$$
\begin{aligned}
H(u, x, p) & =\ell(u, x)+\langle p, f(u, x)\rangle \\
\mathcal{H}(x, p) & =\min _{u \in U} H(u, x, p)
\end{aligned}
$$

Lemma 12. The mapping \mathcal{H} is continuous, concave with respect to p, and Lipschitz continuous with respect to p with modulus $\|f\|_{\infty}$.
Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As an infimum of concave functions, \mathcal{H} is concave. We have:

$$
\begin{gathered}
|\mathcal{H}(x, \tilde{p})-\mathcal{H}(x, p)| \leq \sup _{u \in U}|H(u, x, \tilde{p})-H(u, x, p)| \\
\quad \leq \sup _{u \in U}|\langle\tilde{p}-p, f(u, x)\rangle| \leq\|\tilde{p}-p\| \cdot\|f\|_{\infty} .
\end{gathered}
$$

[Informal derivation]

Notation: $C^{1}\left(\mathbb{R}^{n}\right)$, the set of continuously differentiable functions from \mathbb{R}^{n} to \mathbb{R}.
Lemma 13. Let $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$. Let $x \in \mathbb{R}^{n}$, let $u \in \mathcal{U}_{\infty}$, let $y=y[u, x]$. Consider the mapping:

$$
\begin{aligned}
\varphi: \tau \in[0, \infty) \mapsto \int_{0}^{\tau} & e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t \\
& +e^{-\lambda \tau} \Phi(y(\tau))-\Phi(x)
\end{aligned}
$$

Then $\varphi(0)=0$ and $\varphi \in W^{1, \infty}(0, \infty)$ with

$$
\begin{equation*}
\dot{\varphi}(\tau)=e^{-\lambda \tau}(H(u(\tau), y(\tau), \nabla \Phi(y(\tau)))-\lambda \Phi(y(\tau))) \tag{*}
\end{equation*}
$$

In particular: $\dot{\varphi}(0)=H(u(0), x, \nabla \Phi(x))-\lambda \Phi(x)($ if u is continuous at 0).

[Informal derivation]

Proof. To simplify, we only consider the case where u is continuous, so that y is C^{1} and φ is $C^{1}\left(\mathbb{R}^{n}\right)$. We have then:

$$
\begin{aligned}
\dot{\varphi}(\tau)= & e^{-\lambda \tau} \ell(u(\tau), y(\tau))+e^{-\lambda \tau}\langle\nabla \Phi(y(\tau)), \dot{y}(\tau)\rangle \\
& -\lambda e^{-\lambda \tau} \Phi(y(\tau)) \\
= & e^{-\lambda \tau}[\ell(u(\tau), y(\tau))+\langle\nabla \Phi(y(\tau)), f(u(\tau), y(\tau))\rangle] \\
& -\lambda e^{-\lambda \tau} \Phi(y(\tau)) \\
= & e^{-\lambda \tau}[H(u(\tau), y(\tau), \nabla \Phi(y(\tau)))-\lambda \Phi(y(\tau))] .
\end{aligned}
$$

[HJB in the classical sense]

Theorem 14. Let $x \in \mathbb{R}^{n}$. Assume that

- V is continuously differentiable in a neighborhood of x
- $P(x)$ has a solution \bar{u} which is continuous at time 0.

Then, $\quad \lambda V(x)-\mathcal{H}(x, \nabla V(x))=0$,

$$
\bar{u}(0) \in \underset{u_{0} \in U}{\operatorname{argmin}} H\left(u_{0}, x, \nabla V(x)\right) .
$$

[HJB in the classical sense]

Proof. Step 1. Let $u_{0} \in U$, let u be the constant control equal to u_{0}, let $y=y[u, x]$. By the dynamic programming principle, we have:

$$
\begin{aligned}
0 \leq \varphi(\tau):= & \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t \\
& +e^{-\lambda \tau} V(y(\tau))-V(x)
\end{aligned}
$$

for all τ. Since $\varphi(0)=0$, we deduce from $(*)$ that:

$$
0 \leq \dot{\varphi}(0)=H\left(u_{0}, x, \nabla V(x)\right)-\lambda V(x) .
$$

Therefore,

$$
0 \leq H\left(u_{0}, x, \nabla V(x)\right)-\lambda V(x), \quad \forall u_{0} \in U .
$$

[HJB in the classical sense]

Step 2. Let us apply the dynamic programming principle again. Redefining φ and setting $\bar{y}=y[\bar{u}, x]$, we obtain:

$$
\begin{aligned}
0=\varphi(\tau):= & \int_{0}^{\tau} e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \mathrm{d} t \\
& +e^{-\lambda \tau} V(\bar{y}(\tau))-V(x),
\end{aligned}
$$

for all $\tau \geq 0$. It follows that

$$
0=H(\bar{u}(0), x, \nabla V(x))-\lambda V(x) .
$$

Step 3. It follows that for all $u_{0} \in U$,

$$
H(\bar{u}(0), x, \nabla V(x))=\lambda V(x) \leq H\left(u_{0}, x, \nabla V(x)\right)
$$

Therefore, $H(\bar{u}(0), x, \nabla V(x))=\mathcal{H}(x, \nabla V(x))$.

[HJB in the classical sense]

Corollary 15. Let $t \geq 0$, assume that \bar{u} is continuous in a neighborhood of t and that V is C^{1} in a neighborhood of $\bar{y}(t)$, where $\bar{y}:=y[\bar{u}, x](t)$. Then,

$$
\bar{u}(t) \in \underset{u_{0} \in U}{\operatorname{argmin}} H\left(u_{0}, \bar{y}, \nabla V(\bar{y})\right) .
$$

[HJB in the classical sense]

Remarks.
Let us define the Q-function by $Q(u, y):=H(u, y, \nabla V(y)), \quad$ assuming that $V \in C^{1}\left(\mathbb{R}^{n}\right)$.

- If the minimizer is unique in the following relation, we have a feedback law:

$$
\bar{u}(t)=\underset{U}{\operatorname{argmin}} Q(\cdot, \bar{y}(t)) .
$$

- In some cases, one can show that $\nabla V(\bar{y}(t))=$ $p(t)$, where p is defined by some adjoint equation \rightarrow Pontryagin's principle.
- In Reinforcement Learning, the approximation of Q is a central objective.

We will call the equation

$$
\begin{equation*}
\lambda v(x)-\mathcal{H}(x, \nabla v(x))=0, \quad \forall x \in \mathbb{R}^{n} \tag{HJB}
\end{equation*}
$$

Hamilton-Jacobi-Bellman equation, with unknown $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Remarks.

- In general V is not differentiable \rightarrow in which sense is the HJB equation to be understood?
- In Theorem 14, we have shown that
$\bar{u}(t) \in \operatorname{argmin} H\left(u_{0}, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x])\right)$, (under restrictive assumptions). We will see next that this necessary condition is also sufficient.

Theorem 16. (Verification). Let us assume the assumptions of Theorem 14 hold for all $x \in \mathbb{R}^{n}$, so that the HJB equation is satisfied in the classical sense. Let $x \in \mathbb{R}^{n}$. Assume that there exists a control \bar{u} such that

$$
\bar{u}(t) \in \underset{u_{0} \in U}{\operatorname{argmin}} H\left(u_{0}, \bar{y}(t), \nabla V(\bar{y}(t))\right),
$$

where $\bar{y}=y[\bar{u}, x]$. Then \bar{u} is globally optimal.

Proof. Consider the function:

$\varphi(\tau)=\int_{0}^{\tau} e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \mathrm{d} t+e^{-\lambda \tau} V(\bar{y}(\tau))-V(x)$.
We have $\varphi(0)=0$. Using (*) and Theorem 14, we obtain:

$$
\begin{aligned}
\dot{\varphi}(\tau) & =e^{-\lambda \tau}[H(\bar{u}(\tau), \bar{y}(\tau), \nabla V(\bar{y}(\tau))-V(\bar{y}(\tau))] \\
& =e^{-\lambda \tau}[\mathcal{H}(\bar{y}(\tau), \nabla V(\bar{y}(\tau)))-V(\bar{y}(\tau))] \\
& =0 .
\end{aligned}
$$

Thus φ is constant, equal to 0 . Its limit is given by: $0=\int_{0}^{\infty} e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \mathrm{d} t-V(x)=W(x, \bar{u})-V(x)$, proving the optimality of \bar{u}.

5. HJB EQUATION: VISCOSITY SOLUTIONS

[Abstract PDE]

We consider an abstract PDE of the form:

$$
\mathcal{F}(x, v(x), \nabla v(x))=0, \quad \forall x \in \mathbb{R}^{n},
$$

where $\mathcal{F}: \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous.
It contains the HJB equation with

$$
\mathcal{F}(x, v, p)=\lambda v-\mathcal{H}(x, p)
$$

Goal of the section: showing that V is a viscosity solution to the HJB equation.

[Sub- and super-differentials]

Definition 17. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$. The following sets are called sub- and superdifferential, respectively:

$$
\begin{gathered}
D^{-} v(x)=\left\{p \in \mathbb{R}^{n} \left\lvert\, \liminf _{y \rightarrow x} \frac{v(y)-v(x)-\langle p, y-x\rangle}{\|y-x\|} \geq 0\right.\right\} \\
D^{+} v(x)=\left\{p \in \mathbb{R}^{n} \left\lvert\, \limsup _{y \rightarrow x} \frac{v(y)-v(x)-\langle p, y-x\rangle}{\|y-x\|} \leq 0\right.\right\} .
\end{gathered}
$$

Exercise. Let $v(x)=|x|$. Show that $D^{-} v(0)=[-1,1]$.
[Sub- and super-differentials]
We have the following characterization.
Lemma 18. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous. Let $p \in$ \mathbb{R}^{n}.

- $p \in D^{-} v(x) \Longleftrightarrow$ there exists $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$ such that $\nabla \Phi(x)=p$ and $v-\Phi$ has a local minimum in x.
- $p \in D^{+} v(x) \Longleftrightarrow$ there exists $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$ such that $\nabla \Phi(x)=p$ and $v-\Phi$ has a local maximum in x.
Proof. The implication \Longrightarrow is admitted. The implication \Longleftarrow is left as an exercise.

[Sub- and super-differentials]

Remark. In the above lemma, one can chose $\Phi(x)=$ $v(x)$ without loss of generality. Thus, we have:

- $(v-\Phi)$ has a local minimum in $x \Longleftrightarrow v-\Phi$ is nonnegative in a neighborhood of $x \Longleftrightarrow v$ is locally bounded from below by Φ
- $(v-\Phi)$ has a local maximum in $x \Longleftrightarrow v-\Phi$ is nonpositive in a neighborhood of $x \Longleftrightarrow v$ is locally bounded from above by Φ
Remark. If v is Fréchet differentiable at x, then the sub- and superdifferential are equal to $\{\nabla v(x)\}$.

[Viscosity solutions]

Definition 19. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We call v a viscosity subsolution if

$$
\mathcal{F}(x, v(x), p) \leq 0, \quad \forall x \in \mathbb{R}^{n}, \quad \forall p \in D^{+} v(x)
$$

or, equivalently, if for all $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$ such that $v-\Phi$ has a local maximum in x,

$$
\mathcal{F}(x, v(x), \nabla \Phi(x)) \leq 0
$$

[Viscosity solutions]

Definition 20. Let $v: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We call v a viscosity supersolution if

$$
\mathcal{F}(x, v(x), p) \geq 0, \quad \forall p \in D^{-} v(x)
$$

or, equivalently, if for all $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$ such that $v-\Phi$ has a local minimum in x,

$$
\mathcal{F}(x, v(x), \nabla \Phi(x)) \geq 0
$$

We call v a viscosity solution if it is a sub- and a supersolution.

[Viscosity solutions]

Theorem 21. The value function V is a viscosity solution of the HJB equation.
Step 1: V is a subsolution. Let $x \in \mathbb{R}^{n}$, let $\Phi \in C^{1}\left(\mathbb{R}^{n}\right)$ be such that $V-\Phi$ has a local maximizer in x and $V(x)=\Phi(x)$.

We have to prove that

$$
\lambda v(x)-\mathcal{H}(x, \nabla \Phi(x)) \leq 0 .
$$

Let $u_{0} \in U$, let u be the constant control equal to u_{0} and let $y=y[u, x]$. By the DPP, we have:

$$
V(x) \leq \int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{0}, y(t)\right) \mathrm{d} t+e^{-\lambda \tau} V(y(\tau))
$$

If τ is sufficiently small, we have $V(y(\tau)) \leq \Phi(y(\tau))$.
[Viscosity solutions]
This implies that for τ sufficiently small,
$0 \leq \int_{0}^{\tau} e^{-\lambda t} \ell\left(u_{0}, y(t)\right) \mathrm{d} t+e^{-\lambda \tau} \Phi(y(\tau))-\Phi(x)=: \varphi(\tau)$. Since $\varphi(0)=0$, we deduce with $(*)$ that

$$
0 \leq \dot{\varphi}(0)=H\left(u_{0}, x, \nabla \Phi(x)\right)-\lambda V(x)
$$

Minimizing with respect to $u_{0} \in U$, we obtain:

$$
0 \leq \mathcal{H}(x, \nabla \Phi(x))-\lambda V(x)
$$

as was to be proved.

[Viscosity solutions]

Step 2: V is supersolution. Let $x \in \mathbb{R}^{n}$, let $\Phi \in$ $C^{1}\left(\mathbb{R}^{n}\right)$ be such that $V-\Phi$ has a local minimizer in x and such that $V(x)=\Phi(x)$.
We have to prove that

$$
\lambda V(x)-\mathcal{H}(x, \nabla \Phi(x)) \leq 0
$$

It follows from the dynamic programming principle that for $\tau>0$ small enough
$\Phi(x) \geq$

$$
\inf _{u \in \mathcal{U}_{\tau}} \underbrace{\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[x, u](t)) \mathrm{d} t+e^{-\lambda t} \Phi(y[x, u](\tau))}_{=: \varphi[u](\tau)}
$$

[Viscosity solutions]

Thus by Lemma 13,
$0 \geq \inf _{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \dot{\varphi}[u](t) \mathrm{d} t$

$$
\begin{aligned}
& =\inf _{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} e^{-\lambda t}(H(u(t), y[u](t), \nabla \Phi(y[u](t))-\lambda \Phi(y[u](t)) \mathrm{d} t \\
& \geq \inf _{u \in \mathcal{H}_{\infty}} \int_{0}^{\tau} \underbrace{e^{-\lambda t}(\mathcal{H}(y[u](t), \nabla \Phi(y[u](t))-\lambda \Phi(y[u](t))}_{=: \psi[u](t)} \mathrm{d} t .
\end{aligned}
$$

We have $\psi[u](0)=\mathcal{H}(x, \nabla \Phi(x))-\lambda V(x)$, in particular, $\psi[u](0)$ does not depend on u.

[Viscosity solutions]

Let $\varepsilon>0$. There exists (exercise!) $\tau>0$ such that $|\psi[u](t)-\psi[u](0)| \leq \varepsilon, \quad \forall t \in[0, \tau], \forall u \in \mathcal{U}_{\infty}$.
The previous inequality yields

$$
\begin{aligned}
0 & \geq \inf _{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau}(\psi[u](0)-\varepsilon) \mathrm{d} t \\
& \geq \tau(\mathcal{H}(x, \nabla \Phi(x))-\lambda V(x)-\varepsilon)
\end{aligned}
$$

Dividing by τ and sending ε to 0 , we get the result.

[Viscosity solutions]

Theorem 22. (Comparison principle). Let v_{1} be a subsolution to the HJB equation. Let v_{2} be a supersolution to the HJB equation. Then

$$
v_{1}(x) \leq v_{2}(x), \quad \forall x \in \mathbb{R}^{n}
$$

Proof: admitted.
Corollary 23. The value function V is the unique viscosity solution.
Proof. By the comparison principle, any viscosity solution v is such that $v \leq V$ and $v \geq V$.

