Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Optimal Control of Ordinary Differential Equations SOD 311

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Paris-Saclay University

Ínnia

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem 000000

General information

- Pre-requisites: Basic knowledge in integration, calculus and optimization (Lagrange multipliers).
- No programming session, the lectures will include (theoretical) application exercises.
- All lectures take place at Ensta-Paris.
- Two written exams (lecture and personal notes allowed).
- Website: https://laurentpfeiffer.github.io/sod/

Optimality conditions

Back to the lunar landing problem 000000

First part of the course

In the first part of the course, you will learn...

- how to formulate an optimal control problem
- how to prove the existence of a solution
- how to characterize the solution through optimality conditions.

Schedule:

13.09	13:30-17:15	RB	Examples and analytical framework
20.09	13:30-17:15	LP	Time-optimal problems
21.09	8:30-12:15	LP	Linear-quadratic problems
28.09	8:30-12:15	LP/RB	Pontryagin's principle
05.10	8:30-12:15	RB	Pontryagin's principle
12.10	10:00-12:15		Intermediate written exam

Optimality conditions

Back to the lunar landing problem 000000

Second part of the course

In the second part of the course, you will learn to solve **numerically** an optimal control problem...

- with methods deriving from **Pontryagin**'s principle
- with methods deriving from the dynamic programming principle.

Schedule:

16.11	10:45-12:15		Final written exam
16.11	8:30-10:30	LP	HJB approach
09.11	8:30-12:15	LP	HJB approach
26.10	8:30-12:15	RB	Shooting and direct methods
19.10	8:30-12:15	LP	Model predictive control

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Optimal control in a nutshell

A simple optimal control problem:

 $\inf_{\substack{y \in W^{1,\infty}(0,T) \\ u \in L^{\infty}(0,T)}} \phi(y(T)), \quad \text{subject to:} \begin{cases} \dot{y}(t) = f(y(t), u(t)), \\ y(0) = y_0. \end{cases}$

Vocabulary. Optimization variables:

- u: the control
- y: the state.

Here, the control is said to be **open-loop**, it is a function of time \rightarrow a sequence of pre-defined actions to be executed.

Optimality conditions

Back to the lunar landing problem 000000

In this lecture

Guideline. We aim at finding an optimal control \bar{u} with associated trajectory \bar{y} in **closed-loop** form:

 $\bar{u}(t) = \kappa(t, \bar{y}(t)), \quad \forall t.$

The map κ should be independent of the initial condition y_0 .

Motivation.

- In some situations: easier to find $\kappa!$
- Robustness, flexibility.

Intention.

- Specific techniques from optimal control.
- Overview of the diversity of techniques.

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

In this lecture

Outline.

- Lecture 1: time-optimal linear problems
- Lecture 2: linear-quadratic problems
- Lecture 3: exercises
- Lectures 4 and 5: HJB equation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lecture 1: Time-optimal linear problems

- Goal: controlling a dynamical system so as to reach a target as fast as possible.
- Focus: linear systems $\dot{y}(t) = Ay(t) + Bu(t)$.
- *Issues:* existence of a solution, optimality conditions, graph of feedback κ .

Bibliography

The following references are related to Chapter 1:

🛸 F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitre 1).

🛸 E. Trélat, Contrôle optimal : théorie et applications. Version électronique, 2013. (Chapitre 3).

🛸 E. Sontag, Mathematical Control Theory, Springer, 1998. (Chapter 10).

Optimality conditions

Back to the lunar landing problem 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Example: the lunar landing problem

2 Existence of a solution

3 Optimality conditions

- Separation
- An auxiliary problem
- Back to the time-optimal control problem

4 Back to the lunar landing problem

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Model

A spatial engine has the dynamics:

$$m\ddot{h}(t) = u(t), \quad \forall t \ge 0,$$
 (1)

where:

m	mass of the engine	
h(t)	heigth of the engine at time t	
u(t)	propulsion force at time t	
$v(t) = \dot{h}(t)$	velocity at time <i>t</i> .	

Problem: given h_0 and v_0 , find the smallest T > 0 for which there exist time functions h and u satisfying (1),

 $(h(0), v(0)) = (h_0, v_0),$ and (h(T), v(T)) = (0, 0).

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Mathematical problem

For simplicity, we take m = 1. We consider constraints on u. Given (h_0, v_0) , the problem writes:

$$\inf_{\substack{T \ge 0 \\ h: [0,T] \to \mathbb{R} \\ u: [0,T] \to \mathbb{R}}} T, \quad \text{s.t.:} \quad \begin{cases} \dot{h}(t) = v(t), \quad h(0) = h_0, \quad h(T) = 0, \\ \dot{v}(t) = u(t), \quad v(0) = v_0, \quad v(T) = 0, \\ u(t) \in [-1,1]. \\ u(t) \in [-1,1]. \end{cases}$$

Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system).

For the moment: no theoretical tool at hand... let's see what we can do!

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Mathematical problem

For simplicity, we take m = 1. We consider constraints on u. Given (h_0, v_0) , the problem writes:

$$\inf_{\substack{T \ge 0 \\ h: [0,T] \to \mathbb{R} \\ u: [0,T] \to \mathbb{R}}} T, \quad \text{s.t.:} \quad \begin{cases} \dot{h}(t) = v(t), \quad h(0) = h_0, \quad h(T) = 0, \\ \dot{v}(t) = u(t), \quad v(0) = v_0, \quad v(T) = 0, \\ u(t) \in [-1,1]. \\ u(t) \in [-1,1]. \end{cases}$$

Remark. The state (h, v) is uniquely defined by the control u (via the dynamical system).

For the moment: no theoretical tool at hand... let's see what we can do!

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Accelerating trajectories

For u = 1, we have

$$\begin{cases} v(t) = v_0 + t \\ h(t) = h_0 + tv_0 + \frac{1}{2}t^2. \end{cases}$$

We can isolate t in the first line: $t = v(t) - v_0$ and inject the result in the second line:

$$h(t) = h_0 + (v(t) - v_0)v_0 + \frac{1}{2}(v(t) - v_0)^2.$$

The curve

$$\{(h(t), v(t)) \mid t \ge 0\}$$

is the portion of a parabola.

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Accelerating trajectories

Figure: Trajectories for u = 1 (acceleration).

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Accelerating trajectories

Let Γ_1 denote the set of initial conditions for which u = 1 steers (h, v) to (0, 0). We have:

$$(h_0, v_0) \in \Gamma_1 \iff \begin{cases} \exists T \ge 0\\ 0 = v_0 + T\\ 0 = h_0 + Tv_0 + \frac{1}{2}T^2 \end{cases} \iff \begin{cases} v_0 \le 0\\ 0 = h_0 - v_0^2 + \frac{1}{2}v_0^2. \end{cases}$$

Therefore,

$$\Gamma_1 = \left\{ (h_0, v_0) \in \mathbb{R}^2 \mid \begin{array}{c} v_0 \leq 0 \\ h_0 = \ rac{1}{2} v_0^2. \end{array}
ight\}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Decelerating trajectories

For u = -1, we have

$$\begin{cases} v(t) = v_0 - t \\ h(t) = h_0 + tv_0 - \frac{1}{2}t^2. \end{cases}$$

We can isolate t in the first line: $t = v_0 - v(t)$ and inject the result in the second line:

$$h(t) = h_0 + (v_0 - v(t))v_0 - \frac{1}{2}(v_0 - v(t))^2.$$

The curve

$$\{(h(t), v(t)) \mid t \ge 0\}$$

is the portion of a parabola.

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Decelerating trajectories

Figure: Trajectories for u = -1 (deceleration).

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Decelerating trajectories

Let Γ_{-1} denote the set of initial conditions for which u = -1 steers (h, v) to (0, 0). We have:

$$(h_0, v_0) \in \Gamma_{-1} \iff \begin{cases} \exists T \ge 0 \\ 0 = v_0 - T \\ 0 = h_0 + Tv_0 - \frac{1}{2}T^2 \end{cases} \iff \begin{cases} v_0 \ge 0 \\ 0 = h_0 + v_0^2 - \frac{1}{2}v_0^2. \end{cases}$$

Therefore,

$$\Gamma_{-1} = \left\{ (h_0, v_0) \in \mathbb{R}^2 \mid \begin{array}{c} v_0 \ge 0 \\ h_0 = -\frac{1}{2}v_0^2 \end{array} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

A simple case

Consider the case $v_0 = 0$.

Then we should (fully) accelerate and (fully) decelerate on equal intervals of time.

- If $h_0 < 0$: accelerate (u = 1) until $h(t) = h_0/2$, then decelerate (u = -1).
- If $h_0 > 0$: decelerate (u = -1) until $h(t) = h_0/2$, then accelerate (u = 1).

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A simple case

Figure: Optimal control and trajectory for $v_0 = 0$ and $h_0 < 0$.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A simple case

Figure: Optimal control and trajectory for $v_0 = 0$ and $h_0 > 0$.

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A simple case

Figure: Some optimal trajectories with null initial speed.

General case

The theory (developed in the next sections) tells us the following. For any $(h_0, v_0) \in \mathbb{R}^2$,

- There exists an optimal time \overline{T} and an optimal control \overline{u} .
- Any optimal control takes values in $\{-1, 1\}$.
- Any optimal control is piecewise constant, with atmost two pieces.

General case

In other words, for any optimal control $\bar{u},$ one of the following cases is satisfied:

- 1 $ar{u}(t) = 1$, for almost every $t \in (0, ar{\mathcal{T}})$
- 2 $ar{u}(t)=-1$, for a.e. $t\in(0,\,ar{T})$
- 3 "Accelerate-Decelerate": $\exists \tau \in (0, \overline{T})$ such that: $\overline{u}(t) = 1$, for a.e. $t \in (0, \tau)$, $\overline{u}(t) = -1$, for a.e. $t \in (\tau, \overline{T})$.
- 4 "Decelerate-Accelerate": $\exists \tau \in (0, \overline{T})$ such that: $\overline{u}(t) = -1$, for a.e. $t \in (0, \tau)$, $\overline{u}(t) = 1$, for a.e. $t \in (\tau, \overline{T})$.

In the last two cases, τ is called **switching time**.

Remark for French readers: we use the english notation (a, b) for the open interval, instead of the french notation]a, b[.

Back to the lunar landing problem 000000

General case

The problem is reduced to a **geometric** problem.

Find all trajectories such that...

- starting at the initial condition,
- ending up at the origin,

made of two portions of parabola (a "red" and a "blue" one).
 We will call them **Pontryagin** trajectories.

Methodology: for each initial condition,

- find all possible Pontryagin trajectories,
- find out the optimal one (there may exist Pontryagin trajectories which are not optimal).

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General case

First case: (h_0, v_0) lies strictly under $\Gamma_1 \cup \Gamma_{-1}$. One possibility for the scenario "accelerate-decelerate".

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General case

First case: (h_0, v_0) lies strictly under $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "decelerate-accelerate".

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General case

Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. One possibility for the scenario "decelerate-accelerate".

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

General case

Second case: (h_0, v_0) lies strictly above $\Gamma_1 \cup \Gamma_{-1}$. Zero possibility for the scenario "accelerate-decelerate".

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

・ロト・日本・日本・日本・日本・日本

General case

Conclusion: Whatever the initial condition, there is exactly one Pontryagin trajectory, which is necessarily optimal.

Figure: Phase portrait of optimal trajectories.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

General case

We finally obtain a relation in **feedback form** for optimal controls \bar{u} with associated trajectory (\bar{h}, \bar{v}) :

 $\bar{u}(t) = \kappa(\bar{h}(t), \bar{v}(t)),$

where κ is defined by:

$$\kappa(h, v) = \begin{cases} 1 & \text{if } (h, v) \in \Gamma_1 \\ -1 & \text{if } (h, v) \in \Gamma_{-1} \\ 1 & \text{if } (h, v) \text{ lies strictly under } \Gamma_{-1} \cup \Gamma_1 \\ -1 & \text{if } (h, v) \text{ lies strictly above } \Gamma_{-1} \cup \Gamma_1, \end{cases}$$

for any $(h, v) \in \mathbb{R}^2 \setminus \{0\}$.

Remark: The feedback relation holds whatever the initial condition of the problem.

Back to the lunar landing problem 000000

Summary

The three main steps of our methodology:

- Calculation of trajectories with constant controls (with extremal values).
- Theory \rightarrow structural properties of optimal controls.
- Reformulation of the problem as a **geometric** problem.

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Example: the lunar landing problem

2 Existence of a solution

3 Optimality conditions

- Separation
- An auxiliary problem
- Back to the time-optimal control problem

4 Back to the lunar landing problem

Existence of a solution

Optimality conditions

Back to the lunar landing problem

Framework

A general linear time-optimal control problem:

$$\inf_{\substack{T \ge 0 \\ y \in W^{1,\infty}(0,T;\mathbb{R}^n) \\ u \in L^{\infty}(0,T;\mathbb{R}^m)}} T, \quad \text{s.t.:} \begin{cases} \dot{y}(t) = Ay(t) + Bu(t), \\ y(0) = y_0, \\ y(T) \in C, \\ u(t) \in C, \\ u(t) \in U. \end{cases}$$
(P)

Data of the problem and assumptions:

- Initial condition: $y_0 \in \mathbb{R}^n$
- Dynamics' coefficients: $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times m}$
- A control set: $U \subset \mathbb{R}^m$, assumed convex, compact, non-empty
- A target: $C \subset \mathbb{R}^n$, assumed convex, closed, non-empty.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Matrix exponential

Definition 1

Let $M \in \mathbb{R}^{n \times n}$. We call **matrix exponential** e^M the matrix

$$e^M = \sum_{k=0}^{\infty} \frac{1}{k!} M^k \in \mathbb{R}^{n \times n}.$$

Lemma 2

- For any operator norm $\|\cdot\|$, we have $\|e^M\| \le e^{\|M\|}$.
- For all $t \in \mathbb{R}$, we have $\frac{d}{dt}e^{tM} = Me^{tM} = e^{tM}M$.
- Given $x_0 \in \mathbb{R}^n$, let $x \colon [0,\infty) \to \mathbb{R}^n$ be the solution to

$$\dot{x}(t) = Mx(t), \quad x(0) = x_0.$$

Then $x(t) = e^{tM}x_0$, for all $t \ge 0$.
Optimality conditions

Back to the lunar landing problem 000000

State equation

A pair $(y, u) \in W^{1,\infty}(0, T; \mathbb{R}^n) \times L^{\infty}(0, T; \mathbb{R}^m)$ satisfies the state equation: $\dot{y}(t) = Ay(t) + Bu(t)$, $y(0) = y_0$ if and only if

$$y(t) = y_0 + \int_0^t \left(Ay(s) + Bu(s) \right) \mathrm{d}s, \quad \forall t \in [0, T].$$
 (2)

Theorem 3 (Picard-Lindelöf / FR: Cauchy-Lipschitz)

Given $y_0 \in \mathbb{R}^n$ and $u \in L^{\infty}(0, T; \mathbb{R}^m)$, there exists a unique y satisfying (2). Moreover,

$$y(t) = e^{tA}y_0 + \int_0^t e^{(t-s)A}Bu(s)ds.$$
 [Duhamel's formula]

Notation: y[u].

Back to the lunar landing problem 000000

Reachable set

Some notation:

- $L^{\infty}(0, T; U)$: set of measurable functions from (0, T) to U,
- \overline{T} : the value of problem (P) ($\overline{T} = \infty$ if (P) is infeasible).

Definition 4

Given $t \ge 0$, the **reachable set** at time t, $\mathcal{R}(t)$, is defined by

 $\mathcal{R}(t) = \big\{ y[u](t) \, | \, u \in L^{\infty}(0,t;U) \big\}.$

Lemma 5

- For all $T \ge 0$, the set $\bigcup_{0 \le t \le T} \mathcal{R}(t)$ is bounded.
- For all $t \ge 0$, the reachable set $\mathcal{R}(t)$ is convex.

Proof. Exercise (use Duhamel's formula and boundedness of U).

Optimality conditions

Back to the lunar landing problem 000000

Weak compactness

Definition 6

Let F be a Banach space. Let $(e_k)_{k\in\mathbb{N}}$ be a sequence in F. The sequence **converges weakly** to $\bar{e} \in F$ (notation: $e_k \rightarrow \bar{e}$) if

 $L(e_k) \to L(\bar{e}), \quad \text{for all continuous and linear map } L \colon F \to \mathbb{R}.$

Remark. If $e_k \rightarrow \overline{e}$, then $L(e_k) \rightarrow L(\overline{e})$ for any continuous and linear map $L: F \rightarrow \mathbb{R}^k$.

Lemma 7

Let *E* be a closed and convex subset of a Hilbert space *F*. Let $(e_k)_{k\in\mathbb{N}}$ be a bounded sequence in *E*. Then there exists a weakly convergent subsequence $(e_{k_q})_{q\in\mathbb{N}}$ with weak limit in *E*.

Proof. See Corollary 3.22 and Proposition 5.1 in *Functional Analysis*, by H. Brézis.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Closedness of the reachable set

Lemma 8 (Closedness lemma)

Let $(\tau_k)_{k\in\mathbb{N}}$ be a convergent sequence of positive real numbers with limit $\bar{\tau} \ge 0$. Assume that $\tau_k \ge \bar{\tau}$, $\forall k \in \mathbb{N}$. Let $(y_k)_{k\in\mathbb{N}}$ be a convergent sequence in \mathbb{R}^n with limit \bar{y} . Assume that

$$y_k \in \mathcal{R}(\tau_k), \quad \forall k \in \mathbb{N}.$$

Then $\bar{y} \in \mathcal{R}(\bar{\tau})$.

Corollary 9

For all $t \geq 0$, the set $\mathcal{R}(t)$ is closed.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Proof of the closedness lemma

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_k \in L^{\infty}(0, \tau_k; U)$ be such that $y[u_k](\tau_k) = y_k$. As a consequence of Lemma 5, there exists M > 0 (independent of k) such that

 $\|\dot{y}[u_k]\|_{L^{\infty}(0,\tau_k;\mathbb{R}^m)} \leq M.$

Thus $y[u_k](\cdot)$ is *M*-Lipschitz, that is

$$\|y[u_k](t_2) - y[u_k](t_1)\| \le M|t_2 - t_1|, \quad \forall t_1, t_2 \in [0, T].$$

Next, we have

$$\|y[u_k](\bar{\tau})-\bar{y}\| \leq \underbrace{\|y[u_k](\bar{\tau})-y[u_k](\tau_k)\|}_{\leq M|\tau_k-\bar{\tau}|} + \|\underbrace{y[u_k](\tau_k)}_{y_k}-\bar{y}\| \to 0.$$

Thus $y[u_k](\bar{\tau}) \to \bar{y}$.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Proof of the closedness lemma

Proof. Step 1. For all $k \in \mathbb{N}$, let $u_k \in L^{\infty}(0, \tau_k; U)$ be such that $y[u_k](\tau_k) = y_k$. As a consequence of Lemma 5, there exists M > 0 (independent of k) such that

 $\|\dot{y}[u_k]\|_{L^{\infty}(0,\tau_k;\mathbb{R}^m)}\leq M.$

Thus $y[u_k](\cdot)$ is *M*-Lipschitz, that is

$$\|y[u_k](t_2) - y[u_k](t_1)\| \le M |t_2 - t_1|, \quad \forall t_1, t_2 \in [0, T].$$

Next, we have

$$\|y[u_k](\bar{\tau})-\bar{y}\|\leq \underbrace{\|y[u_k](\bar{\tau})-y[u_k](\tau_k)\|}_{\leq M|\tau_k-\bar{\tau}|}+\|\underbrace{y[u_k](\tau_k)}_{y_k}-\bar{y}\|\rightarrow 0.$$

Thus $y[u_k](\bar{\tau}) \to \bar{y}$.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Proof of the closedness lemma

Step 2. Consider the linear map $L: u \in L^2(0, \bar{\tau}; \mathbb{R}^m) \to \mathbb{R}^n$ defined by

$$L(u) = \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A} Bu(s) \,\mathrm{d}s.$$

By Cauchy-Schwarz inequality, we have

$$|L(u)| \leq \int_0^{\overline{\tau}} e^{(\overline{\tau}-s)||A||} \cdot ||B|| \cdot ||u(s)|| \,\mathrm{d}s$$

$$\leq \underbrace{||B|| \cdot \left(\int_0^{\overline{\tau}} e^{2(\overline{\tau}-s))||A||} \,\mathrm{d}s\right)^{1/2}}_{<\infty} ||u||_{L^2(0,\overline{\tau};\mathbb{R}^m)}.$$

This proves that the linear form *L* is **continuous**.

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Proof of the closedness lemma

Step 3. Apply Lemma 7:

- $L^2(0, \overline{\tau}; \mathbb{R}^m)$ is a Hilbert space
- $L^{\infty}(0, \bar{\tau}; U)$ is convex, closed, and bounded.

Then the sequence u_k (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit \bar{u} .

We have:

 $\underbrace{y[u_{k_q}](\bar{\tau})}_{\longrightarrow \bar{y}} = e^{\bar{\tau}A}y_0 + \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A} Bu_{k_q}(s) ds$ $= e^{\bar{\tau}A}y_0 + L(u_{k_q}) \longrightarrow e^{\bar{\tau}A}y_0 + L(\bar{u}) = y[\bar{u}](\bar{\tau}),$

proving that $\bar{y} = y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau}).$

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

Proof of the closedness lemma

Step 3. Apply Lemma 7:

- $L^2(0, \overline{\tau}; \mathbb{R}^m)$ is a Hilbert space
- $L^{\infty}(0, \bar{\tau}; U)$ is convex, closed, and bounded.

Then the sequence u_k (restricted to $(0, \bar{\tau})$) has a weakly convergent subsequence, with limit \bar{u} .

We have:

$$\underbrace{\underbrace{y[u_{k_q}](\bar{\tau})}_{\longrightarrow \bar{y}} = e^{\bar{\tau}A}y_0 + \int_0^{\bar{\tau}} e^{(\bar{\tau}-s)A} Bu_{k_q}(s) ds}_{= e^{\bar{\tau}A}y_0 + L(u_{k_q}) \longrightarrow e^{\bar{\tau}A}y_0 + L(\bar{u}) = y[\bar{u}](\bar{\tau}),$$

proving that $\bar{y} = y[\bar{u}](\bar{\tau}) \in \mathcal{R}(\bar{\tau}).$

Optimality conditions

Back to the lunar landing problem 000000

Existence result

Theorem 10

Assume that $\overline{T} < \infty$. There exists an optimal control, that is, there exists \overline{u} such that

 $y[\bar{u}](\bar{T}) \in C.$

Proof. Consider the set of times at which the target can be reached, that is:

$$\mathcal{T} = \big\{ T \ge 0 \, | \, \mathcal{R}(T) \cap C \neq \emptyset \big\}.$$

By assumption \mathcal{T} is non empty. By definition, $\overline{\mathcal{T}} = inf \mathcal{T}$. Our task: proving that $\overline{\mathcal{T}} \in \mathcal{T}$.

Back to the lunar landing problem 000000

Existence result

- It suffices to show that $\mathcal{R}(\overline{T}) \cap C \neq \emptyset$.
- Let τ_k ↓ T
 be such that for all k ∈ N, there exists

 y_k ∈ R(τ_k) ∩ C. By Lemma 5, (y_k)_{k∈N} is bounded. Thus it has an accumulation point y
- Since C is closed, $\bar{y} \in C$. By Lemma 8, $\bar{y} \in \mathcal{R}(\bar{T})$.

 Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Example: the lunar landing problem

2 Existence of a solution

3 Optimality conditions

- Separation
- An auxiliary problem
- Back to the time-optimal control problem

4 Back to the lunar landing problem

Back to the lunar landing problem 000000

Methodology

For proving the optimality conditions (in the form of a Pontryagin's principle), we proceed as follows:

- Fix an optimal control \bar{u} for the time-optimal problem.
- Show that \bar{u} is optimal for another problem, easier to treat, referred to as auxiliary problem.
- Establish Pontryagin's principle for the auxiliary problem.

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Hahn-Banach lemma

Lemma 11

Let C_1 and C_2 be two closed and convex sets of \mathbb{R}^n , let C_2 be bounded. Assume that $C_1 \cap C_2 = \emptyset$. Then, there exists $q \in \mathbb{R}^n \setminus \{0\}$ such that

 $\langle q, y_1 \rangle \leq \langle q, y_2 \rangle, \quad \forall y_1 \in C_1, \ \forall y_2 \in C_2.$

We say that q separates C_1 and C_2 .

Proof. See Brezis, Theorem 1.7.

Remark. With loss of generality, we can assume that ||q|| = 1.

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Hahn-Banach lemma

Figure: Illustration of Hahn-Banach lemma.

Existence of a solution 00000000000

Optimality conditions

Back to the lunar landing problem 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Normal cones

Definition 12

Let K be a subset of \mathbb{R}^n and let $x \in K$. The normal cone of K at x, denoted $N_K(x)$ is defined by

 $N_{\mathcal{K}}(x) = \left\{ q \in \mathbb{R}^n \, | \, \langle q, y - x \rangle \leq 0, \, \, \forall y \in \mathcal{K}
ight\}.$

Some examples.

If
$$K = \{\bar{x}\}$$
, then $N_K(\bar{x}) = \mathbb{R}^n$.
If $K = \mathbb{R}^n$, then $N_K(x) = \{0\}$ for any $x \in \mathbb{R}^n$.
Let $\mathbb{R}^n_{\geq 0} := \{x \in \mathbb{R}^n \mid x_i \ge 0, i = 1, ..., n\}$.
Let $\mathbb{R}^n_{\leq 0} := \{x \in \mathbb{R}^n \mid x_i \le 0, i = 1, ..., n\}$. Then
 $N_{\mathbb{R}^n_{\geq 0}}(0) = \mathbb{R}^n_{\leq 0}$ and $N_{\mathbb{R}^n_{\leq 0}}(0) = \mathbb{R}^n_{\geq 0}$

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Normal cones

Figure: A vector in the normal cone.

Optimality conditions

Back to the lunar landing problem 000000

A separation result

Lemma 13 (Separation lemma)

Let \overline{T} denote the value of the time optimal control problem (P). Assume that $0 < \overline{T} < \infty$. Then, there exists $\overline{q} \in \mathbb{R}^n \setminus \{0\}$ such that

 $\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}).$

Corollary 14

For any optimal control \bar{u} , we have $\bar{q} \in N_C(y[\bar{u}](\bar{T}))$.

Proof of the corollary. Take $y = y[\bar{u}](\bar{T})$ in the separation lemma.

・ロト・西ト・西ト・西ト・日・ シック

Existence of a solution

Optimality conditions

Back to the lunar landing problem $_{\rm OOOOOO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A separation result

Figure: Illustration of the separation lemma.

Back to the lunar landing problem 000000

A separation result

Proof of the separation lemma.

- Let $T_k \uparrow \overline{T}$. For all $k \in \mathbb{N}$, $\mathcal{R}(T_k) \cap C = \emptyset$.
- The set C is convex and closed, R(T_k) is compact and convex (by Lemma 5 and Lemma 8).
- By the Hahn-Banach Lemma, there exists q_k such that $\|q_k\| = 1$ and

 $\langle q_k, z \rangle \leq \langle q_k, y \rangle, \quad \forall z \in C, \ \forall y \in \mathcal{R}(T_k).$ (3)

Extracting a subsequence if necessary, we assume that $q_k \to \bar{q}$ for some $\bar{q} \in \mathbb{R}^n$ with $\|\bar{q}\| = 1$.

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A separation result

We next show that \bar{q} separates C and $\mathcal{R}(\bar{T})$.

• Let $z \in C$ and let $y \in \mathcal{R}(\overline{T})$. Let $u \in L^{\infty}(0, T; U)$ be such that $y[u](\overline{T}) = y$. Set $y_k = y[u](T_k) \in \mathcal{R}(T_k)$.

Inequality (3) yields:

$$\langle q_k, z \rangle \leq \langle q_k, y_k \rangle, \quad \forall k \in \mathbb{N}.$$

We pass to the limit and obtain

$$\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle.$$

Optimality conditions

Back to the lunar landing problem 000000

An auxiliary problem

Let T > 0, let $y_0 \in \mathbb{R}^n$, and let $q \in \mathbb{R}^n$ be fixed. Consider the following **auxiliary** optimal control problem:

$$\inf_{\substack{y \in W^{1,\infty}(0,T;\mathbb{R}^n) \\ u \in L^{\infty}(0,T;U)}} \langle q, y(T) \rangle, \quad \text{s.t.:} \begin{cases} \dot{y}(t) = Ay(t) + Bu(t) \\ y(0) = y_0, \\ u(t) \in U. \end{cases}$$
$$(P_{\mathsf{aux}}[q,T])$$

Remark: Let $(\bar{u}, \bar{y}, \bar{T})$ be a solution to the time-optimal problem. Let \bar{q} be as in the separation lemma. Then (\bar{u}, \bar{y}) is a solution to $P_{\text{aux}}[q, T]$, with $(q, T) = (\bar{q}, \bar{T})$.

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:

 $H\colon (u, y, p) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n \mapsto \langle p, Ay + Bu \rangle \in \mathbb{R}.$

Note that

$$H(u, y, p) = \langle A^{\top} p, y \rangle + \langle B^{\top} p, u \rangle.$$

Thus,

$$abla_{\mathcal{Y}} H(u, y, p) = A^{\top} p \quad \text{and} \quad \nabla_{u} H(u, y, p) = B^{\top} p.$$

Let us define *p* as the solution to the **adjoint equation** (also called costate equation):

$$\begin{cases} p(T) = q \\ -\dot{p}(t) = A^{\top} p(t) = \nabla_{y} H(p(t)). \end{cases}$$
(4)

Back to the lunar landing problem 000000

Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:

 $H\colon (u, y, p) \in \mathbb{R}^m \times \mathbb{R}^n \times \mathbb{R}^n \mapsto \langle p, Ay + Bu \rangle \in \mathbb{R}.$

Note that

$$H(u, y, p) = \langle A^{\top} p, y \rangle + \langle B^{\top} p, u \rangle.$$

Thus,

$$abla_y H(u, y, p) = A^\top p \quad \text{and} \quad
abla_u H(u, y, p) = B^\top p.$$

Let us define p as the solution to the **adjoint equation** (also called costate equation):

$$\begin{cases} p(T) = q \\ -\dot{p}(t) = A^{\top} p(t) = \nabla_{y} H(p(t)). \end{cases}$$
(4)

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Pontryagin's principle

Theorem 15 (Pontryagin's minimum principle)

Let (\bar{y}, \bar{u}) be such that $\bar{y} = y[\bar{u}]$. Then (\bar{y}, \bar{u}) is a solution to $(P_{aux}[q, T])$ if and only if

 $\bar{u}(t) \in \operatorname*{argmin}_{v \in U} H(v, \bar{y}(t), p(t)), \quad \textit{for a.e. } t \in (0, T).$

Remark:

$$\operatorname*{argmin}_{v \in U} \ H(v, ar{y}(t), p(t)) = \operatorname*{argmin}_{v \in U} \ \langle B^{ op} p(t), v
angle.$$

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Pontryagin's principle

$$\langle q, y(T) - \overline{y}(T) \rangle = \langle p(T), y(T) - \overline{y}(T) \rangle - \langle p(0), \underbrace{y(0) - \overline{y}(0)}_{=y_0 - y_0 = 0} \rangle$$

Optimality conditions

Back to the lunar landing problem 000000

Proof of Pontryagin's principle

$$\langle q, y(T) - \bar{y}(T) \rangle = \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle$$

= $\int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle dt$

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Pontryagin's principle

$$\begin{split} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0) - \bar{y}(0)} \rangle \\ &= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle \, \mathrm{d}t \end{split}$$

Optimality conditions

Back to the lunar landing problem 000000

Proof of Pontryagin's principle

" \Leftarrow " Assume that (\bar{y}, \bar{u}) satisfies Pontryagin's principle. Let (y, u) be such that y = y[u]. Then

$$\begin{split} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \overline{y(0)} \rangle \\ &= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \overline{y}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle \dot{p}(t), y(t) - \overline{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\overline{y}}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle -A^\top p(t), y(t) - \overline{y}(t) \rangle \, \mathrm{d}t \\ &+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\overline{y}(t) - B\overline{u}(t) \rangle \, \mathrm{d}t \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof of Pontryagin's principle

$$\begin{aligned} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \overline{y(0)} \rangle \\ &= \int_0^T \left\{ \frac{d}{dt} \langle p(t), y(t) - \overline{y}(t) \rangle \right\} dt \\ &= \int_0^T \langle \dot{p}(t), y(t) - \overline{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\overline{y}}(t) \rangle dt \\ &= \int_0^T \langle -p(t), Ay(t) - A\overline{y}(t) \rangle dt \\ &+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\overline{y}(t) - B\overline{u}(t) \rangle dt \end{aligned}$$

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof of Pontryagin's principle

$$\begin{split} \langle q, y(T) - \bar{y}(T) \rangle &= \langle p(T), y(T) - \bar{y}(T) \rangle - \langle p(0), \underline{y(0)} - \bar{y}(0) \rangle \\ &= \int_0^T \frac{d}{dt} \langle p(t), y(t) - \bar{y}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle \dot{p}(t), y(t) - \bar{y}(t) \rangle + \int_0^T \langle p(t), \dot{y}(t) - \dot{\bar{y}}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle -p(t), Ay(t) - A\bar{y}(t) \rangle \, \mathrm{d}t \\ &+ \int_0^T \langle p(t), Ay(t) + Bu(t) - A\bar{y}(t) - B\bar{u}(t) \rangle \, \mathrm{d}t \\ &= \int_0^T \langle B^\top p(t), u(t) - \bar{u}(t) \rangle \, \mathrm{d}t \ge 0. \end{split}$$

Back to the lunar landing problem 000000

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of Pontryagin's principle

" \Longrightarrow " Assume that (\bar{y}, \bar{u}) is optimal. Consider the time function

 $h: t \in [0, T] \mapsto \langle B^{\top} p(t), \bar{u}(t) \rangle \in \mathbb{R}.$

A time t is called Lebesgue point if

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) \mathrm{d}s.$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue function, since $h \in L^1(0, T)$.

Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

 $u_arepsilon(s) = \left\{egin{array}{cc} v & ext{if } s \in (t-arepsilon,t+arepsilon) \ ar{u}(s) & ext{otherwise.} \end{array}
ight.$

Back to the lunar landing problem 000000

Proof of Pontryagin's principle

" \Longrightarrow " Assume that (\bar{y}, \bar{u}) is optimal. Consider the time function

 $h: t \in [0, T] \mapsto \langle B^{\top} p(t), \bar{u}(t) \rangle \in \mathbb{R}.$

A time t is called Lebesgue point if

$$h(t) = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} h(s) \mathrm{d}s.$$

Lebesgue differentiation theorem states that almost every time t is a Lebesgue function, since $h \in L^1(0, T)$.

Let t be a Lebesgue point. Let $v \in U$. Let u_{ε} be defined by

$$u_{arepsilon}(s) = \left\{egin{array}{cc} v & ext{if } s \in (t-arepsilon,t+arepsilon) \ ar{u}(s) & ext{otherwise.} \end{array}
ight.$$

Existence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof of Pontryagin's principle

The same calculation as above leads to:

$$0 \leq \frac{1}{2\varepsilon} \langle q, y[u_{\varepsilon}](T) - \bar{y}(T) \rangle$$

= $\frac{1}{2\varepsilon} \int_{0}^{T} \langle B^{\top} p(s), u_{\varepsilon}(t) - \bar{u}(s) \rangle ds$
= $\frac{1}{2\varepsilon} \int_{t-\varepsilon}^{t+\varepsilon} \langle B^{\top} p(s), v - \bar{u}(s) ds$
 $\xrightarrow{\varepsilon \downarrow 0} \langle B^{\top} p(t), v - \bar{u}(t) \rangle,$

as was to be proved.

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Pontryagin for time-optimal problems

We come back to the **time-optimal control** problem (P).

Theorem 16 (Pontryagin's principle)

Let $y_0 \notin C$, assume that $\overline{T} < \infty$. Let $(\overline{y}, \overline{u})$ be a solution to the original minimum time problem (P). Then, there exists $\overline{q} \in N_C(\overline{y}(\overline{T}))$, $\overline{q} \neq 0$ such that

 $\bar{u}(t) \in \underset{v \in U}{\operatorname{argmin}} H(v, \bar{y}(t), p(t)) = \underset{v \in U}{\operatorname{argmin}} \langle B^{\top} p, v \rangle, \qquad (5)$

where p is the solution to the costate equation:

 $-\dot{p}(t) = A^{\top}p(t), \quad p(\bar{T}) = \bar{q}.$

Remark. Pontryagin's principle is only a necessary optimality condition.

Back to the lunar landing problem 000000

Proof

Proof.

By Lemma 13 and by Corollary 14, there exists $\bar{q} \in N_C(\bar{y}(\bar{T}))$ such that

$$\langle \bar{q}, z \rangle \leq \langle \bar{q}, y \rangle, \quad \forall z \in C, \quad \forall y \in \mathcal{R}(\bar{T}).$$

We take $z = \overline{y}(\overline{T}) \in C$.

- It follows that (\bar{y}, \bar{u}) is a solution to the auxiliary problem $(P_{aux}[q, T])$, with $q = \bar{q}$ and $T = \bar{T}$.
- Applying Pontryagin's principle to the auxiliary problem (Theorem 15), we obtain (5).
Back to the lunar landing problem $\bullet \circ \circ \circ \circ \circ \circ$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 Example: the lunar landing problem

2 Existence of a solution

3 Optimality conditions

- Separation
- An auxiliary problem
- Back to the time-optimal control problem

4 Back to the lunar landing problem

Example: the lunar landing problem

Existence of a solution

Optimality conditions

Back to the lunar landing problem 00000

Lunar landing problem

Recall the problem:

$$\inf_{\substack{T \ge 0 \\ h: [0,T] \to \mathbb{R} \\ v: [0,T] \to \mathbb{R} \\ u: [0,T] \to \mathbb{R}}} T, \quad \text{s.t.:} \quad \begin{cases} \dot{h}(t) = v(t), & h(0) = h_0, & h(T) = 0 \\ \dot{v}(t) = u(t), & v(0) = v_0, & v(T) = 0 \\ u(t) \in [-1,1]. \end{cases}$$

The dynamics writes:

$$\begin{pmatrix} \dot{h}(t)\\ \dot{v}(t) \end{pmatrix} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} \begin{pmatrix} h(t)\\ v(t) \end{pmatrix} + \begin{pmatrix} 0\\ 1 \end{pmatrix} u(t).$$

The lunar landing problem is a special case of (P), with

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad C = \{0\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example: the lunar landing problem

Existence of a solution

Optimality conditions

Back to the lunar landing problem $\circ \circ \circ \circ \circ \circ \circ$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lunar landing problem

We apply Pontryagin's principle. Let T be the optimal time.

Costate equation (4) reads:

$$-\begin{pmatrix}\dot{p}_h(t)\\\dot{p}_\nu(t)\end{pmatrix}=A^{\top}\begin{pmatrix}p_h(t)\\p_\nu(t)\end{pmatrix}=\begin{pmatrix}0&0\\1&0\end{pmatrix}\begin{pmatrix}p_h(t)\\p_\nu(t)\end{pmatrix}=\begin{pmatrix}0\\p_h(t)\end{pmatrix}.$$

- Terminal condition: $(p_h(T), p_v(T)) \in N_C(\bar{h}(T), \bar{v}(T)) = \mathbb{R}^2$ does not bring any information!
- Analytic resolution:

$$p_h(t) = p_h(T), \quad \dot{p}_v(t) = -p_h(t) = -p_h(T)$$

and thus

$$p_v(t) = p_v(T) + p_h(T)(T-t).$$

Back to the lunar landing problem $\circ \circ \bullet \circ \circ \circ$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lunar landing problem

We apply Pontryagin's principle. Let T be the optimal time.

Costate equation (4) reads:

$$-\begin{pmatrix} \dot{p}_h(t)\\ \dot{p}_\nu(t) \end{pmatrix} = A^\top \begin{pmatrix} p_h(t)\\ p_\nu(t) \end{pmatrix} = \begin{pmatrix} 0 & 0\\ 1 & 0 \end{pmatrix} \begin{pmatrix} p_h(t)\\ p_\nu(t) \end{pmatrix} = \begin{pmatrix} 0\\ p_h(t) \end{pmatrix}.$$

- Terminal condition: $(p_h(T), p_v(T)) \in N_C(\bar{h}(T), \bar{v}(T)) = \mathbb{R}^2$ does not bring any information!
- Analytic resolution:

$$p_h(t) = p_h(T), \quad \dot{p}_v(t) = -p_h(t) = -p_h(T)$$

and thus

$$p_{\nu}(t)=p_{\nu}(T)+p_{h}(T)(T-t).$$

Example: the lunar landing problem

xistence of a solution

Optimality conditions

Back to the lunar landing problem 000000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lunar landing problem

The minimization condition reads:

$$ar{u}(t) \in \operatorname*{argmin}_{v\in [-1,1]} inom{0}{1}^ op inom{p_h(t)}{p_v(t)} v = \operatorname*{argmin}_{v\in [-1,1]} p_v(t) v.$$

It follows that

$$egin{cases} ar{u}(t)=-1 & ext{if } p_{
u}(t)>0 \ ar{u}(t)=1 & ext{if } p_{
u}(t)<0 \ \end{cases}$$
 for a.e. $t\in[0,T].$

Back to the lunar landing problem 000000

Lunar landing problem

We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1, 1\}$.

• Case 1:
$$p_h(T) = 0$$
. Then $p_v(T) \neq 0$. Therefore
• either $p_v(t) = p_v(T) < 0 \Longrightarrow \overline{u}(t) = 1$
• or $p_v(t) = p_v(T) > 0 \Longrightarrow \overline{u}(t) = -1$.

- Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1.
 - If $\tau \in (0, T)$, then there is a switch.

Back to the lunar landing problem 000000

Lunar landing problem

We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1, 1\}$.

• Case 1:
$$p_h(T) = 0$$
. Then $p_v(T) \neq 0$. Therefore
• either $p_v(t) = p_v(T) < 0 \Longrightarrow \overline{u}(t) = 1$
• or $p_v(t) = p_v(T) > 0 \Longrightarrow \overline{u}(t) = -1$.

Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .

- If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1.
- If $\tau \in (0, T)$, then there is a switch.

Back to the lunar landing problem 000000

Lunar landing problem

- We now **prove the original conjecture**: any optimal control is piecewise constant, with at most two pieces, taking values in $\{-1, 1\}$.
 - Case 1: $p_h(T) = 0$. Then $p_v(T) \neq 0$. Therefore • either $p_v(t) = p_v(T) < 0 \Longrightarrow \overline{u}(t) = 1$ • or $p_v(t) = p_v(T) > 0 \Longrightarrow \overline{u}(t) = -1$.
 - Case 2: $p_h(T) \neq 0$. Then the map $t \mapsto p_v(T) + p_h(T)(T-t)$ vanishes at exactly one point, say τ .
 - If $\tau \leq 0$ or $\tau \geq T$, then the optimal control is constant, equal to 1 or -1.
 - If $\tau \in (0, T)$, then there is a switch.

A summary

Given a linear time-optimal control problem, the following methodology can be followed to analyze it:

- 1 Put the state equation in the form $\dot{y} = Ay + Bu$. Check the **assumptions** state at the beginning of Section 2.
- **2 Existence** of a solution: verify the applicability of Theorem 10.
- **3** Derive **optimality conditions** with Theorem 15.
- Deduce structural properties of optimal controls and trajectories.
- **5** Transform the problem into a **geometric** problem.
- 6 Solve it!