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General information

Pre-requisites: Basic knowledge in integration, calculus and
optimization (Lagrange multipliers).

No programming session, the lectures will include (theoretical)
application exercises.

All lectures take place at Ensta-Paris.

Two written exams (lecture and personal notes allowed).

Website: https://laurentpfeiffer.github.io/sod/

https://laurentpfeiffer.github.io/sod/
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First part of the course

In the first part of the course, you will learn...

how to formulate an optimal control problem

how to prove the existence of a solution

how to characterize the solution through optimality
conditions.

Schedule:

13.09 13:30-17:15 RB Examples and analytical framework

20.09 13:30-17:15 LP Time-optimal problems

21.09 8:30-12:15 LP Linear-quadratic problems

28.09 8:30-12:15 LP/RB Pontryagin’s principle

05.10 8:30-12:15 RB Pontryagin’s principle

12.10 10:00-12:15 Intermediate written exam
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Second part of the course

In the second part of the course, you will learn to solve
numerically an optimal control problem...

with methods deriving from Pontryagin’s principle

with methods deriving from the dynamic programming
principle.

Schedule:

19.10 8:30-12:15 LP Model predictive control

26.10 8:30-12:15 RB Shooting and direct methods

09.11 8:30-12:15 LP HJB approach

16.11 8:30-10:30 LP HJB approach

16.11 10:45-12:15 Final written exam
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Optimal control in a nutshell

A simple optimal control problem:

inf
y∈W 1,∞(0,T )
u∈L∞(0,T )

φ(y(T )), subject to:

{
ẏ(t) = f (y(t), u(t)),

y(0) = y0.

Vocabulary. Optimization variables:

u: the control

y : the state.

Here, the control is said to be open-loop, it is a function of time
→ a sequence of pre-defined actions to be executed.
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In this lecture

Guideline. We aim at finding an optimal control ū with associated
trajectory ȳ in closed-loop form:

ū(t) = κ(t, ȳ(t)), ∀t.

The map κ should be independent of the initial condition y0.

Motivation.

In some situations: easier to find κ!

Robustness, flexibility.

Intention.

Specific techniques from optimal control.

Overview of the diversity of techniques.
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In this lecture

Outline.

Lecture 1: time-optimal linear problems

Lecture 2: linear-quadratic problems

Lecture 3: exercises

Lectures 4 and 5: HJB equation.
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Lecture 1:
Time-optimal linear problems

Goal: controlling a dynamical system so as to reach a target
as fast as possible.

Focus: linear systems ẏ(t) = Ay(t) + Bu(t).

Issues: existence of a solution, optimality conditions, graph of
feedback κ.
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Model

A spatial engine has the dynamics:

mḧ(t) = u(t), ∀t ≥ 0, (1)

where:

m mass of the engine
h(t) heigth of the engine at time t
u(t) propulsion force at time t

v(t) = ḣ(t) velocity at time t.

Problem: given h0 and v0, find the smallest T > 0 for which there
exist time functions h and u satisfying (1),

(h(0), v(0)) = (h0, v0), and (h(T ), v(T )) = (0, 0).
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Mathematical problem

For simplicity, we take m = 1. We consider constraints on u.
Given (h0, v0), the problem writes:

inf
T≥0

h : [0,T ]→R
v : [0,T ]→R
u : [0,T ]→R

T , s.t.:


ḣ(t) = v(t), h(0) = h0, h(T ) = 0,

v̇(t) = u(t), v(0) = v0, v(T ) = 0,

u(t) ∈ [−1, 1].

Remark. The state (h, v) is uniquely defined by the control u (via
the dynamical system).

For the moment: no theoretical tool at hand... let’s see what we
can do!
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Accelerating trajectories

For u = 1, we have{
v(t) = v0 + t

h(t) = h0 + tv0 + 1
2 t

2.

We can isolate t in the first line: t = v(t)− v0 and inject the
result in the second line:

h(t) = h0 + (v(t)− v0)v0 +
1

2
(v(t)− v0)2.

The curve
{(h(t), v(t)) | t ≥ 0}

is the portion of a parabola.
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Accelerating trajectories

Figure: Trajectories for u = 1 (acceleration).
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Accelerating trajectories

Let Γ1 denote the set of initial conditions for which u = 1 steers
(h, v) to (0, 0). We have:

(h0, v0) ∈ Γ1 ⇐⇒


∃T ≥ 0

0 = v0 + T

0 = h0 + Tv0 + 1
2T

2

⇐⇒

{
v0 ≤ 0

0 = h0 − v2
0 + 1

2v
2
0 .

Therefore,

Γ1 =

{
(h0, v0) ∈ R2

∣∣∣∣ v0 ≤ 0
h0 = 1

2v
2
0 .

}
.
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Decelerating trajectories

For u = −1, we have{
v(t) = v0 − t

h(t) = h0 + tv0 − 1
2 t

2.

We can isolate t in the first line: t = v0 − v(t) and inject the
result in the second line:

h(t) = h0 + (v0 − v(t))v0 −
1

2
(v0 − v(t))2.

The curve
{(h(t), v(t)) | t ≥ 0}

is the portion of a parabola.
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Decelerating trajectories

Figure: Trajectories for u = −1 (deceleration).
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Decelerating trajectories

Let Γ−1 denote the set of initial conditions for which u = −1 steers
(h, v) to (0, 0). We have:

(h0, v0) ∈ Γ−1 ⇐⇒


∃T ≥ 0

0 = v0 − T

0 = h0 + Tv0 − 1
2T

2

⇐⇒

{
v0 ≥ 0

0 = h0 + v2
0 − 1

2v
2
0 .

Therefore,

Γ−1 =

{
(h0, v0) ∈ R2

∣∣∣∣ v0 ≥ 0
h0 = −1

2v
2
0

}
.
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A simple case

Consider the case v0 = 0.

Then we should (fully) accelerate and (fully) decelerate on equal
intervals of time.

If h0 < 0: accelerate (u = 1) until h(t) = h0/2, then
decelerate (u = −1).

If h0 > 0: decelerate (u = −1) until h(t) = h0/2, then
accelerate (u = 1).
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A simple case

Figure: Optimal control and trajectory for v0 = 0 and h0 < 0.
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A simple case

Figure: Optimal control and trajectory for v0 = 0 and h0 > 0.
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A simple case

Figure: Some optimal trajectories with null initial speed.
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General case

The theory (developed in the next sections) tells us the following.

For any (h0, v0) ∈ R2,

There exists an optimal time T̄ and an optimal control ū.

Any optimal control takes values in {−1, 1}.
Any optimal control is piecewise constant, with atmost two
pieces.
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General case

In other words, for any optimal control ū, one of the following
cases is satisfied:

1 ū(t) = 1, for almost every t ∈ (0, T̄ )

2 ū(t) = −1, for a.e. t ∈ (0, T̄ )

3 “Accelerate-Decelerate”: ∃τ ∈ (0, T̄ ) such that:
ū(t) = 1, for a.e. t ∈ (0, τ), ū(t) = −1, for a.e. t ∈ (τ, T̄ ).

4 “Decelerate-Accelerate”: ∃τ ∈ (0, T̄ ) such that:
ū(t) = −1, for a.e. t ∈ (0, τ), ū(t) = 1, for a.e. t ∈ (τ, T̄ ).

In the last two cases, τ is called switching time.

Remark for French readers: we use the english notation (a, b) for the open
interval, instead of the french notation ]a, b[.
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General case

The problem is reduced to a geometric problem.

Find all trajectories such that...

starting at the initial condition,

ending up at the origin,

made of two portions of parabola (a “red” and a “blue” one).

We will call them Pontryagin trajectories.

Methodology: for each initial condition,

find all possible Pontryagin trajectories,

find out the optimal one (there may exist Pontryagin
trajectories which are not optimal).
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General case

First case: (h0, v0) lies strictly under Γ1 ∪ Γ−1.
One possibility for the scenario “accelerate-decelerate”.
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General case

First case: (h0, v0) lies strictly under Γ1 ∪ Γ−1.
Zero possibility for the scenario “decelerate-accelerate”.



Example: the lunar landing problem Existence of a solution Optimality conditions Back to the lunar landing problem

General case

Second case: (h0, v0) lies strictly above Γ1 ∪ Γ−1.
One possibility for the scenario “decelerate-accelerate”.
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General case

Second case: (h0, v0) lies strictly above Γ1 ∪ Γ−1.
Zero possibility for the scenario “accelerate-decelerate”.
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General case

Conclusion: Whatever the initial condition, there is exactly one
Pontryagin trajectory, which is necessarily optimal.

Figure: Phase portrait of optimal trajectories.
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General case

We finally obtain a relation in feedback form for optimal controls
ū with associated trajectory (h̄, v̄):

ū(t) = κ(h̄(t), v̄(t)),

where κ is defined by:

κ(h, v) =


1 if (h, v) ∈ Γ1

−1 if (h, v) ∈ Γ−1

1 if (h, v) lies strictly under Γ−1 ∪ Γ1

−1 if (h, v) lies strictly above Γ−1 ∪ Γ1,

for any (h, v) ∈ R2\{0}.

Remark: The feedback relation holds whatever the initial condition
of the problem.
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Summary

The three main steps of our methodology:

Calculation of trajectories with constant controls (with
extremal values).

Theory → structural properties of optimal controls.

Reformulation of the problem as a geometric problem.
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Framework

A general linear time-optimal control problem:

inf
T≥0

y∈W 1,∞(0,T ;Rn)
u∈L∞(0,T ;Rm)

T , s.t.:


ẏ(t) = Ay(t) + Bu(t),

y(0) = y0,

y(T ) ∈ C ,

u(t) ∈ U.

(P)

Data of the problem and assumptions:

Initial condition: y0 ∈ Rn

Dynamics’ coefficients: A ∈ Rn×n and B ∈ Rn×m

A control set: U ⊂ Rm, assumed convex, compact, non-empty

A target: C ⊂ Rn, assumed convex, closed, non-empty.
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Matrix exponential

Definition 1

Let M ∈ Rn×n. We call matrix exponential eM the matrix

eM =
∞∑
k=0

1

k!
Mk ∈ Rn×n.

Lemma 2

For any operator norm ‖ · ‖, we have ‖eM‖ ≤ e‖M‖.

For all t ∈ R, we have d
dt e

tM = MetM = etMM.

Given x0 ∈ Rn, let x : [0,∞)→ Rn be the solution to

ẋ(t) = Mx(t), x(0) = x0.

Then x(t) = etMx0, for all t ≥ 0.
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State equation

A pair (y , u) ∈W 1,∞(0,T ;Rn)× L∞(0,T ;Rm) satisfies the state
equation: ẏ(t) = Ay(t) + Bu(t), y(0) = y0 if and only if

y(t) = y0 +

∫ t

0

(
Ay(s) + Bu(s)

)
ds, ∀t ∈ [0,T ]. (2)

Theorem 3 (Picard-Lindelöf / FR: Cauchy-Lipschitz)

Given y0 ∈ Rn and u ∈ L∞(0,T ;Rm), there exists a unique y
satisfying (2). Moreover,

y(t) = etAy0 +

∫ t

0
e(t−s)ABu(s)ds. [Duhamel’s formula]

Notation: y [u].
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Reachable set

Some notation:

L∞(0,T ;U): set of measurable functions from (0,T ) to U,

T̄ : the value of problem (P) (T̄ =∞ if (P) is infeasible).

Definition 4

Given t ≥ 0, the reachable set at time t, R(t), is defined by

R(t) =
{
y [u](t) | u ∈ L∞(0, t;U)

}
.

Lemma 5

For all T ≥ 0, the set ∪0≤t≤TR(t) is bounded.

For all t ≥ 0, the reachable set R(t) is convex.

Proof. Exercise (use Duhamel’s formula and boundedness of U).
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Weak compactness

Definition 6

Let F be a Banach space. Let (ek)k∈N be a sequence in F . The
sequence converges weakly to ē ∈ F (notation: ek ⇀ ē) if

L(ek)→ L(ē), for all continuous and linear map L : F → R.

Remark. If ek ⇀ ē, then L(ek)→ L(ē) for any continuous and
linear map L : F → Rk .

Lemma 7

Let E be a closed and convex subset of a Hilbert space F . Let
(ek)k∈N be a bounded sequence in E . Then there exists a weakly
convergent subsequence (ekq)q∈N with weak limit in E .

Proof. See Corollary 3.22 and Proposition 5.1 in Functional
Analysis, by H. Brézis.
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Closedness of the reachable set

Lemma 8 (Closedness lemma)

Let (τk)k∈N be a convergent sequence of positive real numbers
with limit τ̄ ≥ 0. Assume that τk ≥ τ̄ , ∀k ∈ N.
Let (yk)k∈N be a convergent sequence in Rn with limit ȳ . Assume
that

yk ∈ R(τk), ∀k ∈ N.

Then ȳ ∈ R(τ̄).

Corollary 9

For all t ≥ 0, the set R(t) is closed.
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Proof of the closedness lemma

Proof. Step 1. For all k ∈ N, let uk ∈ L∞(0, τk ;U) be such that
y [uk ](τk) = yk . As a consequence of Lemma 5, there exists M > 0
(independent of k) such that

‖ẏ [uk ]‖L∞(0,τk ;Rm) ≤ M.

Thus y [uk ](·) is M-Lipschitz, that is

‖y [uk ](t2)− y [uk ](t1)‖ ≤ M|t2 − t1|, ∀t1, t2 ∈ [0,T ].

Next, we have

‖y [uk ](τ̄)− ȳ‖ ≤ ‖y [uk ](τ̄)− y [uk ](τk)‖︸ ︷︷ ︸
≤M|τk−τ̄ |

+‖ y [uk ](τk)︸ ︷︷ ︸
yk

−ȳ‖ → 0.

Thus y [uk ](τ̄)→ ȳ .
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Proof of the closedness lemma

Step 2. Consider the linear map L : u ∈ L2(0, τ̄ ;Rm)→ Rn defined
by

L(u) =

∫ τ̄

0
e(τ̄−s)ABu(s) ds.

By Cauchy-Schwarz inequality, we have

|L(u)| ≤
∫ τ̄

0
e(τ̄−s)‖A‖ · ‖B‖ · ‖u(s)‖ ds

≤ ‖B‖ ·
(∫ τ̄

0
e2(τ̄−s))‖A‖ ds

)1/2

︸ ︷︷ ︸
<∞

‖u‖L2(0,τ̄ ;Rm).

This proves that the linear form L is continuous.
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Proof of the closedness lemma

Step 3. Apply Lemma 7:

L2(0, τ̄ ;Rm) is a Hilbert space

L∞(0, τ̄ ;U) is convex, closed, and bounded.

Then the sequence uk (restricted to (0, τ̄)) has a weakly
convergent subsequence, with limit ū.

We have:

y [ukq ](τ̄)︸ ︷︷ ︸
−→ȳ

= e τ̄Ay0 +

∫ τ̄

0
e(τ̄−s)ABukq(s)ds

= e τ̄Ay0 + L(ukq) −→ e τ̄Ay0 + L(ū) = y [ū](τ̄),

proving that ȳ = y [ū](τ̄) ∈ R(τ̄).
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Existence result

Theorem 10

Assume that T̄ <∞. There exists an optimal control, that is,
there exists ū such that

y [ū](T̄ ) ∈ C .

Proof. Consider the set of times at which the target can be
reached, that is:

T =
{
T ≥ 0 |R(T ) ∩ C 6= ∅

}
.

By assumption T is non empty. By definition, T̄ = inf T .
Our task: proving that T̄ ∈ T .
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Existence result

It suffices to show that R(T̄ ) ∩ C 6= ∅.
Let τk ↓ T̄ be such that for all k ∈ N, there exists
yk ∈ R(τk) ∩ C . By Lemma 5, (yk)k∈N is bounded. Thus it
has an accumulation point ȳ .

Since C is closed, ȳ ∈ C . By Lemma 8, ȳ ∈ R(T̄ ).
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Methodology

For proving the optimality conditions (in the form of a
Pontryagin’s principle), we proceed as follows:

Fix an optimal control ū for the time-optimal problem.

Show that ū is optimal for another problem, easier to treat,
referred to as auxiliary problem.

Establish Pontryagin’s principle for the auxiliary problem.
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Hahn-Banach lemma

Lemma 11

Let C1 and C2 be two closed and convex sets of Rn, let C2 be
bounded. Assume that C1 ∩ C2 = ∅. Then, there exists
q ∈ Rn\{0} such that

〈q, y1〉 ≤ 〈q, y2〉, ∀y1 ∈ C1, ∀y2 ∈ C2.

We say that q separates C1 and C2.

Proof. See Brezis, Theorem 1.7.

Remark. With loss of generality, we can assume that ‖q‖ = 1.
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Hahn-Banach lemma

Figure: Illustration of Hahn-Banach lemma.



Example: the lunar landing problem Existence of a solution Optimality conditions Back to the lunar landing problem

Normal cones

Definition 12

Let K be a subset of Rn and let x ∈ K . The normal cone of K at
x , denoted NK (x) is defined by

NK (x) =
{
q ∈ Rn | 〈q, y − x〉 ≤ 0, ∀y ∈ K

}
.

Some examples.

If K = {x̄}, then NK (x̄) = Rn.

If K = Rn, then NK (x) = {0} for any x ∈ Rn.

Let Rn
≥0 := {x ∈ Rn | xi ≥ 0, i = 1, ..., n}.

Let Rn
≤0 := {x ∈ Rn | xi ≤ 0, i = 1, ..., n}. Then

NRn
≥0

(0) = Rn
≤0 and NRn

≤0
(0) = Rn

≥0
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Normal cones

Figure: A vector in the normal cone.
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A separation result

Lemma 13 (Separation lemma)

Let T̄ denote the value of the time optimal control problem (P).
Assume that 0 < T̄ <∞. Then, there exists q̄ ∈ Rn\{0} such that

〈q̄, z〉 ≤ 〈q̄, y〉, ∀z ∈ C , ∀y ∈ R(T̄ ).

Corollary 14

For any optimal control ū, we have q̄ ∈ NC (y [ū](T̄ )).

Proof of the corollary. Take y = y [ū](T̄ ) in the separation lemma.
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A separation result

Figure: Illustration of the separation lemma.
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A separation result

Proof of the separation lemma.

Let Tk ↑ T̄ . For all k ∈ N, R(Tk) ∩ C = ∅.
The set C is convex and closed, R(Tk) is compact and
convex (by Lemma 5 and Lemma 8).

By the Hahn-Banach Lemma, there exists qk such that
‖qk‖ = 1 and

〈qk , z〉 ≤ 〈qk , y〉, ∀z ∈ C , ∀y ∈ R(Tk). (3)

Extracting a subsequence if necessary, we assume that qk → q̄
for some q̄ ∈ Rn with ‖q̄‖ = 1.
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A separation result

We next show that q̄ separates C and R(T̄ ).

Let z ∈ C and let y ∈ R(T̄ ).
Let u ∈ L∞(0,T ;U) be such that y [u](T̄ ) = y .
Set yk = y [u](Tk) ∈ R(Tk).

Inequality (3) yields:

〈qk , z〉 ≤ 〈qk , yk〉, ∀k ∈ N.

We pass to the limit and obtain

〈q̄, z〉 ≤ 〈q̄, y〉.
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An auxiliary problem

Let T > 0, let y0 ∈ Rn, and let q ∈ Rn be fixed.
Consider the following auxiliary optimal control problem:

inf
y∈W 1,∞(0,T ;Rn)
u∈L∞(0,T ;U)

〈q, y(T )〉, s.t.:


ẏ(t) = Ay(t) + Bu(t)

y(0) = y0,

u(t) ∈ U.

(Paux[q,T ])

Remark: Let (ū, ȳ , T̄ ) be a solution to the time-optimal problem.
Let q̄ be as in the separation lemma. Then (ū, ȳ) is a solution to
Paux[q,T ], with (q,T ) = (q̄, T̄ ).
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Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:

H : (u, y , p) ∈ Rm × Rn × Rn 7→ 〈p,Ay + Bu〉 ∈ R.

Note that
H(u, y , p) = 〈A>p, y〉+ 〈B>p, u〉.

Thus,

∇yH(u, y , p) = A>p and ∇uH(u, y , p) = B>p.

Let us define p as the solution to the adjoint equation (also
called costate equation):{

p(T ) = q

−ṗ(t) = A>p(t) = ∇yH(p(t)).
(4)
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Pontryagin’s principle

Theorem 15 (Pontryagin’s minimum principle)

Let (ȳ , ū) be such that ȳ = y [ū].
Then (ȳ , ū) is a solution to (Paux[q,T ]) if and only if

ū(t) ∈ argmin
v∈U

H(v , ȳ(t), p(t)), for a.e. t ∈ (0,T ).

Remark:

argmin
v∈U

H(v , ȳ(t), p(t)) = argmin
v∈U

〈B>p(t), v〉.
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Proof of Pontryagin’s principle

“⇐=” Assume that (ȳ , ū) satisfies Pontryagin’s principle.
Let (y , u) be such that y = y [u]. Then

〈q, y(T )− ȳ(T )〉 = 〈p(T ), y(T )− ȳ(T )〉 − 〈p(0), y(0)− ȳ(0)︸ ︷︷ ︸
=y0−y0=0

〉
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=

∫ T

0

d

dt
〈p(t), y(t)− ȳ(t)〉 dt
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Proof of Pontryagin’s principle

“⇐=” Assume that (ȳ , ū) satisfies Pontryagin’s principle.
Let (y , u) be such that y = y [u]. Then

〈q, y(T )− ȳ(T )〉 = 〈p(T ), y(T )− ȳ(T )〉 − 〈p(0), y(0)− ȳ(0)︸ ︷︷ ︸
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∫ T

0

d

dt
〈p(t), y(t)− ȳ(t)〉 dt

=

∫ T

0
〈ṗ(t), y(t)− ȳ(t)〉+

∫ T

0
〈p(t), ẏ(t)− ˙̄y(t)〉 dt
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Proof of Pontryagin’s principle

“⇐=” Assume that (ȳ , ū) satisfies Pontryagin’s principle.
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=

∫ T

0
〈ṗ(t), y(t)− ȳ(t)〉+

∫ T

0
〈p(t), ẏ(t)− ˙̄y(t)〉 dt

=

∫ T

0
〈−A>p(t), y(t)− ȳ(t)〉 dt

+

∫ T

0
〈p(t),Ay(t) + Bu(t)− Aȳ(t)− Bū(t)〉 dt
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=

∫ T

0
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Proof of Pontryagin’s principle

“⇐=” Assume that (ȳ , ū) satisfies Pontryagin’s principle.
Let (y , u) be such that y = y [u]. Then
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〉
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∫ T
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d

dt
〈p(t), y(t)− ȳ(t)〉 dt

=

∫ T

0
〈ṗ(t), y(t)− ȳ(t)〉+

∫ T

0
〈p(t), ẏ(t)− ˙̄y(t)〉 dt

=

∫ T

0
〈−p(t),Ay(t)− Aȳ(t)〉 dt

+

∫ T

0
〈p(t),Ay(t) + Bu(t)− Aȳ(t)− Bū(t)〉 dt

=

∫ T

0
〈B>p(t), u(t)− ū(t)〉 dt ≥ 0.
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Proof of Pontryagin’s principle

“=⇒” Assume that (ȳ , ū) is optimal. Consider the time function

h : t ∈ [0,T ] 7→ 〈B>p(t), ū(t)〉 ∈ R.

A time t is called Lebesgue point if

h(t) = lim
ε→0

1

2ε

∫ t+ε

t−ε
h(s)ds.

Lebesgue differentiation theorem states that almost every time t is
a Lebesgue function, since h ∈ L1(0,T ).

Let t be a Lebesgue point. Let v ∈ U. Let uε be defined by

uε(s) =

{
v if s ∈ (t − ε, t + ε)

ū(s) otherwise.
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Proof of Pontryagin’s principle

The same calculation as above leads to:

0 ≤ 1

2ε
〈q, y [uε](T )− ȳ(T )〉

=
1

2ε

∫ T

0
〈B>p(s), uε(t)− ū(s)〉 ds

=
1

2ε

∫ t+ε

t−ε
〈B>p(s), v − ū(s) ds

−→
ε↓0
〈B>p(t), v − ū(t)〉,

as was to be proved.
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Pontryagin for time-optimal problems

We come back to the time-optimal control problem (P).

Theorem 16 (Pontryagin’s principle)

Let y0 /∈ C, assume that T̄ <∞. Let (ȳ , ū) be a solution to the
original minimum time problem (P).
Then, there exists q̄ ∈ NC (ȳ(T̄ )), q̄ 6= 0 such that

ū(t) ∈ argmin
v∈U

H(v , ȳ(t), p(t)) = argmin
v∈U

〈B>p, v〉, (5)

where p is the solution to the costate equation:

−ṗ(t) = A>p(t), p(T̄ ) = q̄.

Remark. Pontryagin’s principle is only a necessary optimality
condition.
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Proof

Proof.

By Lemma 13 and by Corollary 14, there exists q̄ ∈ NC (ȳ(T̄ ))
such that

〈q̄, z〉 ≤ 〈q̄, y〉, ∀z ∈ C , ∀y ∈ R(T̄ ).

We take z = ȳ(T̄ ) ∈ C .

It follows that (ȳ , ū) is a solution to the auxiliary problem
(Paux[q,T ]), with q = q̄ and T = T̄ .

Applying Pontryagin’s principle to the auxiliary problem
(Theorem 15), we obtain (5).
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Lunar landing problem

Recall the problem:

inf
T≥0

h : [0,T ]→R
v : [0,T ]→R
u : [0,T ]→R

T , s.t.:


ḣ(t) = v(t), h(0) = h0, h(T ) = 0

v̇(t) = u(t), v(0) = v0, v(T ) = 0

u(t) ∈ [−1, 1].

The dynamics writes:(
ḣ(t)
v̇(t)

)
=

(
0 1
0 0

)(
h(t)
v(t)

)
+

(
0
1

)
u(t).

The lunar landing problem is a special case of (P), with

A =

(
0 1
0 0

)
, B =

(
0
1

)
, C = {0}.
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Lunar landing problem

We apply Pontryagin’s principle. Let T be the optimal time.

Costate equation (4) reads:

−
(
ṗh(t)
ṗv (t)

)
= A>

(
ph(t)
pv (t)

)
=

(
0 0
1 0

)(
ph(t)
pv (t)

)
=

(
0

ph(t)

)
.

Terminal condition: (ph(T ), pv (T )) ∈ NC (h̄(T ), v̄(T )) = R2

does not bring any information!

Analytic resolution:

ph(t) = ph(T ), ṗv (t) = −ph(t) = −ph(T )

and thus
pv (t) = pv (T ) + ph(T )(T − t).
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Lunar landing problem

The minimization condition reads:

ū(t) ∈ argmin
v∈[−1,1]

(
0
1

)>(
ph(t)
pv (t)

)
v = argmin

v∈[−1,1]
pv (t)v .

It follows that{
ū(t) = −1 if pv (t) > 0

ū(t) = 1 if pv (t) < 0
for a.e. t ∈ [0,T ].
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Lunar landing problem

We now prove the original conjecture: any optimal control is
piecewise constant, with at most two pieces, taking values in
{−1, 1}.

Case 1: ph(T ) = 0. Then pv (T ) 6= 0. Therefore

either pv (t) = pv (T ) < 0 =⇒ ū(t) = 1
or pv (t) = pv (T ) > 0 =⇒ ū(t) = −1.

Case 2: ph(T ) 6= 0. Then the map t 7→ pv (T ) +ph(T )(T − t)
vanishes at exactly one point, say τ .

If τ ≤ 0 or τ ≥ T , then the optimal control is constant, equal
to 1 or -1.
If τ ∈ (0,T ), then there is a switch.
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Case 2: ph(T ) 6= 0. Then the map t 7→ pv (T ) +ph(T )(T − t)
vanishes at exactly one point, say τ .

If τ ≤ 0 or τ ≥ T , then the optimal control is constant, equal
to 1 or -1.
If τ ∈ (0,T ), then there is a switch.



Example: the lunar landing problem Existence of a solution Optimality conditions Back to the lunar landing problem

Lunar landing problem

We now prove the original conjecture: any optimal control is
piecewise constant, with at most two pieces, taking values in
{−1, 1}.

Case 1: ph(T ) = 0. Then pv (T ) 6= 0. Therefore

either pv (t) = pv (T ) < 0 =⇒ ū(t) = 1
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A summary

Given a linear time-optimal control problem, the following
methodology can be followed to analyze it:

1 Put the state equation in the form ẏ = Ay + Bu. Check the
assumptions state at the beginning of Section 2.

2 Existence of a solution: verify the applicability of Theorem
10.

3 Derive optimality conditions with Theorem 15.

4 Deduce structural properties of optimal controls and
trajectories.

5 Transform the problem into a geometric problem.

6 Solve it!
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