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General information

m Pre-requisites: Basic knowledge in integration, calculus and
optimization (Lagrange multipliers).

No programming session, the lectures will include (theoretical)
application exercises.

m All lectures take place at Ensta-Paris.
m Two written exams (lecture and personal notes allowed).

m Website: https://laurentpfeiffer.github.io/sod/


https://laurentpfeiffer.github.io/sod/

First part of the course

In the first part of the course, you will learn...
m how to formulate an optimal control problem
m how to prove the existence of a solution

m how to characterize the solution through optimality

conditions.
Schedule:
13.09 | 13:30-17:15 RB Examples and analytical framework
20.09 | 13:30-17:15 LP Time-optimal problems
21.09 | 8:30-12:15 LP Linear-quadratic problems
28.09 | 8:30-12:15 | LP/RB Pontryagin’s principle
05.10 | 8:30-12:15 RB Pontryagin’s principle

] 12.10 \ 10:00-12:15 \ \ Intermediate written exam




Second part of the course

In the second part of the course, you will learn to solve
numerically an optimal control problem...

m with methods deriving from Pontryagin's principle

m with methods deriving from the dynamic programming
principle.

Schedule:

19.10 | 8:30-12:15 | LP Model predictive control
26.10 | 8:30-12:15 | RB | Shooting and direct methods
09.11 | 8:30-12:15 | LP HJB approach

16.11 | 8:30-10:30 | LP HJB approach

16.11 | 10:45-12:15 | |  Final written exam




Optimal control in a nutshell

A simple optimal control problem:

inf  o(y(T)), subject to: { 9(8) = Fy(0). ult)).
yfemﬁ:;oo’)n y(0) = yo

Voocabulary. Optimization variables:
m u: the control

m y: the state.

Here, the control is said to be open-loop, it is a function of time
— a sequence of pre-defined actions to be executed.



In this lecture

Guideline. We aim at finding an optimal control & with associated
trajectory y in closed-loop form:

(t) = k(t, y(t), Vvt
The map & should be independent of the initial condition yyp.

Motivation.
m In some situations: easier to find !

m Robustness, flexibility.

Intention.
m Specific techniques from optimal control.

m Overview of the diversity of techniques.



In this lecture

Outline.
m Lecture 1. time-optimal linear problems
m Lecture 2: linear-quadratic problems
m Lecture 3: exercises
[

Lectures 4 and 5: HJB equation.



Lecture 1:
Time-optimal linear problems

m Goal: controlling a dynamical system so as to reach a target
as fast as possible.

m Focus: linear systems y(t) = Ay(t) + Bu(t).

m /ssues: existence of a solution, optimality conditions, graph of
feedback k.
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Model

A spatial engine has the dynamics:

mh(t) = u(t), Vt>D0, (1)
where:
m mass of the engine
h(t) heigth of the engine at time t
u(t) propulsion force at time t
v(t) = h(t) | velocity at time t.

Problem: given hg and vy, find the smallest T > 0 for which there
exist time functions h and v satisfying (1),

(h(0),v(0)) = (ho, wo), and (h(T),v(T))=(0,0).
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Mathematical problem

For simplicity, we take m = 1. We consider constraints on u.
Given (hg, vp), the problem writes:

h(t) = v(t), h(0)=hy, h(T)=0,
}n>fo T, st v(t) =u(t), v(0)=w, v(T)=0,
h: [0,T]—R u(t) € [-1,1].
v: [0, T]=R
u: [0,T]-R

Remark. The state (h, v) is uniquely defined by the control u (via
the dynamical system).
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Mathematical problem

For simplicity, we take m = 1. We consider constraints on u.
Given (hg, vp), the problem writes:

h(t) = v(t), h(0)=hy, h(T)=0,
}n>fo T, st v(t) =u(t), v(0)=w, v(T)=0,
h: [0,T]—R u(t) € [-1,1].
v: [0, T]=R
u: [0,T]—=R

Remark. The state (h, v) is uniquely defined by the control u (via
the dynamical system).

For the moment: no theoretical tool at hand... let's see what we

can do!
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Accelerating trajectories

For u =1, we have

v(t)= w+t
h(t) = ho + tvo + 2t2.

We can isolate t in the first line: t = v(t) — v and inject the
result in the second line:

h(t) = ho + (v(t) — vo)vo + %(v(t) — ).
The curve

{(h(2), v(2)) [t = O}

is the portion of a parabola.
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Accelerating trajectories

R

I'y

Figure: Trajectories for u = 1 (acceleration).
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Accelerating trajectories

Let 1 denote the set of initial conditions for which u = 1 steers
(h,v) to (0,0). We have:

T >0 <0
V(
(ho,v) ET1 <= <0=w+ T — 0= b 15
12 O0=ho—v5+35v5.
0=h0+TVO+§T
Therefore,
<0
r1={(ho7vo)€R2 ,‘:0: 1.2 }
0 — EVO.
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Decelerating trajectories

For u = —1, we have

V(t) = y—t

h(t) = ho + tvo — 2t2.
We can isolate t in the first line: t = vo — v(t) and inject the
result in the second line:

h(t) = ho + (vo — v(£))vo — %(VO ()2
The curve

{(h(2), v(2)) [t = O}

is the portion of a parabola.
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Decelerating trajectories

Y
>

~
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Figure: Trajectories for u = —1 (deceleration).



Example: the lunar landing problem
0000000e@00000000000000

Decelerating trajectories

Let [_1 denote the set of initial conditions for which v = —1 steers
(h,v) to (0,0). We have:
dT >0 -0
Vo 2
ho,w) €ElN1<=<0=vwy—T —
(o, vo) ! Yo {Ozho-i-vg—évg.

0=ho+ Two— 2 T2

Therefore,

F_1 = {(ho, Vo) S Rz

VoZ 0
ho = f%vg '
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A simple case

Consider the case vy = 0.
Then we should (fully) accelerate and (fully) decelerate on equal
intervals of time.
m If hg < 0: accelerate (u = 1) until h(t) = hy/2, then
decelerate (u = —1).
m If hg > 0: decelerate (u = —1) until h(t) = ho/2, then
accelerate (u = 1).
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A simple case

A u(t)
1
>
_14
A v(t)
> 1
A h(t)
> 1
ho
2
ho

Figure: Optimal control and trajectory for vy = 0 and hg < 0.
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A simple case

A u(t)
lA
> t
~1
(@) .
A 1(t)
ho
ho
2
> t

Figure: Optimal control and trajectory for vy = 0 and hg > 0.
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A simple case

Y
>

Figure: Some optimal trajectories with null initial speed.
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General case

The theory (developed in the next sections) tells us the following.

For any (ho, vo) € R?,
m There exists an optimal time T and an optimal control &.
m Any optimal control takes values in {—1,1}.

m Any optimal control is piecewise constant, with atmost two
pieces.
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General case

In other words, for any optimal control &, one of the following
cases is satisfied:

i(t) = 1, for almost every t € (0, T)

i(t) = —1, forae. t € (0, T)

“Accelerate-Decelerate”: 37 € (0, T) such that: )
u(t) =1, forae. t€(0,7), a(t) = —1, forae. t e (r,T).

“Decelerate-Accelerate”: 37 € (0, T) such that: _
u(t)=—1, forae te (0,7), u(t) =1, forae te(r,T).

In the last two cases, 7 is called switching time.

Remark for French readers: we use the english notation (a, b) for the open
interval, instead of the french notation ]a, b[.
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General case

The problem is reduced to a geometric problem.

Find all trajectories such that...
m starting at the initial condition,
m ending up at the origin,
m made of two portions of parabola (a “red” and a “blue” one).

We will call them Pontryagin trajectories.
Methodology: for each initial condition,
m find all possible Pontryagin trajectories,

m find out the optimal one (there may exist Pontryagin
trajectories which are not optimal).



Example: the lunar landing problem
000000000000000e000000

General case

First case: (hg, vp) lies strictly under 1 UT 5.
One possibility for the scenario “accelerate-decelerate”.

(%

Y
>
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General case

First case: (hg, vp) lies strictly under 1 UT 5.
Zero possibility for the scenario “decelerate-accelerate”.

v
I

Y
>
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General case

Second case: (hg, vp) lies strictly above ' UT_3.
One possibility for the scenario “decelerate-accelerate”.

v
r
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General case

Second case: (hg, vp) lies strictly above ' UT_3.
Zero possibility for the scenario “accelerate-decelerate”.

v
r

Y
>
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General case

Conclusion: Whatever the initial condition, there is exactly one
Pontryagin trajectory, which is necessarily optimal.

v
| ]

NSt

Figure: Phase portrait of optimal trajectories.
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General case

We finally obtain a relation in feedback form for optimal controls
U with associated trajectory (h, v):

i(t) = s (h(t), 7(t)),

where k is defined by:

1 if(hyv)el

k(h,v) = —1 if(hv) el
1 if (h,v) lies strictly under ;1 U T
—1 if (h,v) lies strictly above I'_; UT7,

for any (h,v) € R?\{0}.

Remark: The feedback relation holds whatever the initial condition
of the problem.
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Summary

The three main steps of our methodology:

m Calculation of trajectories with constant controls (with
extremal values).
m Theory — structural properties of optimal controls.

m Reformulation of the problem as a geometric problem.
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Framework

A general linear time-optimal control problem:

0) =
inf T, st 4 Yo, (P)
T>0 y(T)e C,
yeW?he°(0, T;R")
ueL>(0,T;R™) u(t) e U.

Data of the problem and assumptions:
m Initial condition: yg € R”
m Dynamics’ coefficients: A € R"*" and B € R™"™
m A control set: U C R™, assumed convex, compact, non-empty

m A target: C C R", assumed convex, closed, non-empty.
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Matrix exponential

Let M € R™". We call matrix exponential e the matrix

e/\/l :iil\/’k eRan
k! '

.

m For any operator norm || - ||, we have ||eM|| < elMI.
m Forall t € R, we have LetM = MetM = M M.

m Given xp € R”, let x: [0,00) — R" be the solution to

x(t) = Mx(t), x(0)= xo.

Then x(t) = etMxq, for all t > 0.
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State equation

A pair (y,u) € W1(0, T;R") x L>°(0, T; R™) satisfies the state
equation: y(t) = Ay(t) + Bu(t), y(0) = yo if and only if

y(t) =yo+ /Ot (Ay(s) + Bu(s))ds, vVt e [0, T]. (2)

Theorem 3 (Picard-Lindelof / FR: Cauchy-Lipschitz)

Given yp € R" and u € L>°(0, T;R™), there exists a unique y
satisfying (2). Moreover,

t
y(t) = ePyo + / e*=9ABu(s)ds. [Duhamel’s formula]
0

Notation: y[u].
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Reachable set

Some notation:
m >0, T; U): set of measurable functions from (0, T) to U,
m T: the value of problem (P) (T = oo if (P) is infeasible).

Definition 4
Given t > 0, the reachable set at time t, R(t), is defined by

R(t) = {y[u](t)| u e L=(0,t; U)}.

m Forall T >0, the set Up<t<TR(t) is bounded.
m For all t > 0, the reachable set R(t) is convex.

Proof. Exercise (use Duhamel’s formula and boundedness of U).
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Weak compactness

Definition 6

Let F be a Banach space. Let (ex)xen be a sequence in F. The
sequence converges weakly to & € F (notation: e, — &) if

L(ek) — L(€), for all continuous and linear map L: F — R.

Remark. If e, — €, then L(ex) — L(€) for any continuous and
linear map L: F — Rk,

Let E be a closed and convex subset of a Hilbert space F. Let
(ex)ken be a bounded sequence in E. Then there exists a weakly
convergent subsequence (ey,)qen With weak limit in E.

Proof. See Corollary 3.22 and Proposition 5.1 in Functional
Analysis, by H. Brézis.
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Closedness of the reachable set

Lemma 8 (Closedness lemma)

Let (Tx)ken be a convergent sequence of positive real numbers
with limit T > 0. Assume that 7, > T, Vk € N.
Let (yk)ken be a convergent sequence in R" with limit y. Assume
that

vk € R(mk), VkeN.

Then y € R(T).

Corollary 9
For all t > 0, the set R(t) is closed.
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Proof of the closedness lemma

Proof. Step 1. For all k € N, let uy € L*°(0, 7%; U) be such that
y[uk](7«) = yk. As a consequence of Lemma 5, there exists M > 0
(independent of k) such that

[y [uk]ll Lo (0,7 ;Rm) < M.

Thus y[uk](-) is M-Lipschitz, that is

y[uk](t2) = ylul(t)ll < M|ta — ta|,  Vt1, t2 € [0, T].
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Proof of the closedness lemma

Proof. Step 1. For all k € N, let uy € L*°(0, 7%; U) be such that
y[uk](7«) = yk. As a consequence of Lemma 5, there exists M > 0
(independent of k) such that

H)I/[uk]”LOO(OJk;R'") <M.
Thus y[uk](-) is M-Lipschitz, that is

y[uk](t2) = ylul(t)ll < M|ta — ta|,  Vt1, t2 € [0, T].

Next, we have

Iy [u(7) = 71l < [Iylud (7) = ylud (7o) |+l y [ua] (7)) =y (| = 0.

<M|7—7| Yk

Thus y[u](T) — ¥.
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Proof of the closedness lemma

Step 2. Consider the linear map L: u € L?(0,7;R™) — R" defined
by

L(u) = / eT=9)ABuy(s) ds.
0

By Cauchy-Schwarz inequality, we have

()] < / AL |1 B|| - [|u(s) ds
0

T T—Ss 1/2
181 ([ &4 ds) ™ ul o

<oo

IN

This proves that the linear form L is continuous.
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Proof of the closedness lemma

Step 3. Apply Lemma 7:
m [2(0,7;R™) is a Hilbert space
m [>°(0,7; U) is convex, closed, and bounded.

Then the sequence uy (restricted to (0,7)) has a weakly
convergent subsequence, with limit .
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Proof of the closedness lemma

Step 3. Apply Lemma 7:
m [?(0,7;R™) is a Hilbert space
m [>°(0,7; U) is convex, closed, and bounded.
Then the sequence uy (restricted to (0,7)) has a weakly

convergent subsequence, with limit .

We have:

Y[k )(7) = e yo + / eT=94Buy (s)ds
A,—/ 0

—y

= eFAyO + L(ukq) — e?Ayo + L(E) = Y[E](%)v

proving that y = y[d](7) € R(7).
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Existence result

Theorem 10

Assume that T < co. There exists an optimal control, that is,
there exists i such that

y[@)(T) € C.

Proof. Consider the set of times at which the target can be
reached, that is:

T={T>0|R(T)NC #0}.

By assumption 7 is non empty. By definition, T=infT.
Our task: proving that T € 7.



Existence of a solution
0000000000e

Existence result

m It suffices to show that R(T) N C # (.

m Let 74 | T be such that for all k € N, there exists
yk € R(mx) N C. By Lemma 5, (yk)ken is bounded. Thus it
has an accumulation point .

m Since C is closed, y € C. By Lemma 8, y € R(T).
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Optimality conditions
m Separation
m An auxiliary problem
m Back to the time-optimal control problem
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Methodology

For proving the optimality conditions (in the form of a
Pontryagin’s principle), we proceed as follows:

m Fix an optimal control & for the time-optimal problem.

m Show that & is optimal for another problem, easier to treat,
referred to as auxiliary problem.

m Establish Pontryagin’s principle for the auxiliary problem.
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Hahn-Banach lemma

Lemma 11

Let C; and Gy be two closed and convex sets of R", let Cy be
bounded. Assume that C; N Co = (0. Then, there exists
g € R"\{0} such that

(g, y1) <(q,y2), Yy € Ci, Yy € G

We say that q separates C1 and G,.

Proof. See Brezis, Theorem 1.7.

Remark. With loss of generality, we can assume that ||q|| = 1.
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Hahn-Banach lemma

(q,z) < M

Figure: Illustration of Hahn-Banach lemma.
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Normal cones

Definition 12

Let K be a subset of R” and let x € K. The normal cone of K at
x, denoted Nk(x) is defined by

Nk(x) = {g € R"|(q,y —x) <0, Vy € K}.

Some examples.
m If K = {X}, then Nk(X) = R".
m If K =R", then Nk(x) = {0} for any x € R".
mlet Ry :={xeR"[x;>0,i=1,..,n}
Let R%o ={xeR"|x;<0,i=1,....,n}. Then

NR"ZO(O) = %0 and NR"SO(O) = go
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Normal cones

Figure: A vector in the normal cone.
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A separation result

Lemma 13 (Separation lemma)

Let T denote the value of the time optimal control problem (P).
Assume that 0 < T < oo. Then, there exists § € R"\{0} such that

(g,2z) <(g,y), Vze C, VyeR(T).

Corollary 14

For any optimal control &, we have § € Nc(y[@](T)).

Proof of the corollary. Take y = y[a](T) in the separation lemma.
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A separation result

R(T)

Figure: Illustration of the separation lemma.
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A separation result

Proof of the separation lemma.
mlet T, 1T T. Forall ke N, R(Tx)N C = 0.

m The set C is convex and closed, R(T) is compact and
convex (by Lemma 5 and Lemma 8).

m By the Hahn-Banach Lemma, there exists g, such that
el = 1 and

(qk,2) < (qk,y), Yz e C, Yy € R(Tx). (3)

Extracting a subsequence if necessary, we assume that g, — §
for some g € R" with ||| = 1.
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A separation result

We next show that G separates C and R(T).

mletze Candlety € R(T). )
Let u € L>°(0, T; U) be such that y[u](T) = y.
Set yi = y[u](Tk) € R(Tk).

m Inequality (3) yields:

(ks 2) < (Qi>yk), Vk eN.

m We pass to the limit and obtain
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An auxiliary problem

Let T >0, let yg € R”, and let g € R” be fixed.
Consider the following auxiliary optimal control problem:

y(t) = Ay(t) + Bu(t)
Jinf {q,y(T)), st: q ¥(0)= o
yeW?eo(0,T;R")
uel®(0,T;U) u(t) e U.
(Paux[q7 T])

Remark: Let (&, y, T) be a solution to the time-optimal problem.
Let g be as in the separation lemma. Then (&, ¥) is a solution to
Pauxlg, T], with (g, T) = (g, T).
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Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:
H: (u,y,p) € R x R" x R" — (p, Ay + Bu) € R.

Note that
H(u,y.p) = (A"p,y) + (B p, u).
Thus,

V,H(u,y,p)=A"p and V,H(u,y,p)=B"p.
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Pre-Hamiltonian and adjoint equation

Define the pre-Hamiltonian:
H: (u,y,p) € R x R" x R" — (p, Ay + Bu) € R.

Note that
H(u,y.p) = (A"p,y) + (B p, u).

Thus,

V,H(u,y,p)=A"p and V,H(u,y,p)=B"p.

Let us define p as the solution to the adjoint equation (also
called costate equation):
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Pontryagin's principle

Theorem 15 (Pontryagin's minimum principle)

Let (y, ) be such that y = y[a].
Then (y, a) is a solution to (Paux[g, T]) if and only if

u(t) € argmin H(v,y(t), p(t)), fora.e. t € (0,T).
velU

Remark:

argmin H(v, 7(t), p(t)) = argmin (B p(t), v).
veu veu
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Proof of Pontryagin's principle

“«<=" Assume that (y, ) satisfies Pontryagin's principle.
Let (y, u) be such that y = y[u]. Then

(0, y(T) =y(T)) = (p(T),y(T) = y(T)) = (p(0), ¥(0) — (0))

=Yo—y0=0
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Proof of Pontryagin's principle

“«<=" Assume that (y, &) satisfies Pontryagin's principle.
Let (y, u) be such that y = y[u]. Then

(0, y(T) =y(T)) = (p(T),y(T) = y(T)) = (p(0), ¥(0) — ¥(0))

Ty ) =yo—y0=0
:/0 E(p(t),y(t)—}’(f»dt
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Proof of Pontryagin's principle

“«<=" Assume that (¥, &) satisfies Pontryagin’s principle.
Let (y, u) be such that y = y[u]. Then

(q,y(T) =y(T)) = (p(T), y(T) = y(T)) = (p(0), y(0) — y(0))
T d =Yo—y0=0



“«<=" Assume that (y, ) satisfies Pontryagin's principle.
Let (y, u) be such that y = y[u]. Then

.
+/0 (p(t), Ay(t) + Bu(t) — Ay(t) — Ba(t)) dt



“«<=" Assume that (y, ) satisfies Pontryagin's principle.
Let (y, u) be such that y = y[u]. Then

(=p(1), Ay(t) — Ay(1)) dt

.
+/0 (p(t), Ay (t) + Bu(t) — Ay(t) — Ba(t)) dt



“«<=" Assume that (y, &) satisfies Pontryagin's principle.
Let (y, u) be such that y = y[u]. Then

(—p(t), Ay(t) — Ay(t)) dt
T
+/0 (p(t), Ay(t) + Bu(t) — Ay(t) — Bu(t)) dt

-/ "(BT p(t), u(t) — BB de > 0.
0
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Proof of Pontryagin's principle

“=—" Assume that (¥, &) is optimal. Consider the time function
h:te[0, T]— (B'p(t),d(t)) € R.

A time t is called Lebesgue point if

1 t+e
h(t) = EI|_r1102—6 - h(s)ds.

Lebesgue differentiation theorem states that almost every time t is
a Lebesgue function, since h € L1(0, T).
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Proof of Pontryagin's principle

“=—" Assume that (¥, &) is optimal. Consider the time function
h:te[0, T]— (B'p(t),d(t)) € R.

A time t is called Lebesgue point if
1 t+e
h(t) = lim — h(s)ds.

e—0 26 t—e

Lebesgue differentiation theorem states that almost every time t is
a Lebesgue function, since h € L1(0, T).

Let t be a Lebesgue point. Let v € U. Let u. be defined by

v ifse(t—et+e)
us(s) =< _ .
a(s) otherwise.



Optimality conditions
eIeTeTote] }

Proof of Pontryagin's principle

The same calculation as above leads to:

0 < (g ylul(T) = 7(T))

.
_ 215/0 (BT p(s), u.(t) — i(s)) ds

1 t+e T _
=2/ (B p(s),v—a(s)ds
T (B'p(t), v — a(t)),

as was to be proved.
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Pontryagin for time-optimal problems

We come back to the time-optimal control problem (P).

Theorem 16 (Pontryagin's principle)

Let yo ¢ C, assume that T < occ. Let (y, i) be a solution to the
original minimum time problem (P).
Then, there exists § € Nc(y(T)), g # 0 such that

a(t) € argmin H(v, 7(t), p(t)) = argmin (BTp,v),  (5)
vel vel

where p is the solution to the costate equation:

—p(t) = ATp(t), p(T)=4q.

Remark. Pontryagin's principle is only a necessary optimality
condition.
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Proof-

m By Lemma 13 and by Corollary 14, there exists § € Nc(y(T))
such that

(G,2) <(G,y), VzeC, VyeR(T).

We take z :)7(7_') e C.
m It follows that (¥, i) is a solution to the auxiliary problem
('Daux[qa T]), with q = C_] and T =T.

m Applying Pontryagin's principle to the auxiliary problem
(Theorem 15), we obtain (5).
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Lunar landing problem

Recall the problem:

h(t) = v(t),  h(0)=hy, h(T)=0
inf T, osto § () =u(t),  v(0)=w, v(T)=0
h: [0, T]=R u(t) € [-1,1].
v: [0,T]=R
u: [0,T]=R

The dynamics writes:

()~ D) Qo

The lunar landing problem is a special case of (P), with

A:<8 (1)> B:(?), C = {o}.
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Lunar landing problem

We apply Pontryagin's principle. Let T be the optimal time.
m Costate equation (4) reads:

() =2 () = (0 0) () = (o)
m Terminal condition: (pu(T), pu(T)) € Nc(h(T),v(T)) = R?
does not bring any information!
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Lunar landing problem

We apply Pontryagin's principle. Let T be the optimal time.
m Costate equation (4) reads:

() =2 () = (0 0) () = (o)
m Terminal condition: (pu(T), pu(T)) € Nc(h(T),v(T)) = R?
does not bring any information!

m Analytic resolution:

pn(t) = pa(T), pv(t) = —pa(t) = —pn(T)

and thus
pv(t) = pv(T) + pa(T)(T — t).
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Lunar landing problem

m The minimization condition reads:

i(t) € argmin G’)T <ph(t)> v = argmin p,(t)v.

ve[-1,1] pv(t) ve[-1,1]

It follows that

{a(t) =—1 ifp,(t)>0

forae t€[0, T].
a(t)=1 ifp,(t)<0 orae 0.7
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Lunar landing problem

We now prove the original conjecture: any optimal control is
piecewise constant, with at most two pieces, taking values in

{~1,1}.
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Lunar landing problem

We now prove the original conjecture: any optimal control is
piecewise constant, with at most two pieces, taking values in

{~1,1}.

m Case 1: py(T)=0. Then p,(T) # 0. Therefore
m either p,(t) =p(T) < 0= @(t) =1
morp(t)=p,(T)>0= a(t) =-1.
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Lunar landing problem

We now prove the original conjecture: any optimal control is
piecewise constant, with at most two pieces, taking values in

{~1,1}.

m Case 1: py(T)=0. Then p,(T) # 0. Therefore
m either p,(t) =p(T) < 0= @(t) =1
morp(t)=p,(T)>0= a(t) =-1.

m Case 2: pp(T) #0. Then the map t — p,(T)+pa(T)(T —t)
vanishes at exactly one point, say 7.
m If 7<0or7>T, then the optimal control is constant, equal
to 1 or-1.
m If 7 € (0, T), then there is a switch.
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A summary

Given a linear time-optimal control problem, the following
methodology can be followed to analyze it:

Put the state equation in the form y = Ay + Bu. Check the
assumptions state at the beginning of Section 2.

Existence of a solution: verify the applicability of Theorem
10.

Derive optimality conditions with Theorem 15.

Deduce structural properties of optimal controls and
trajectories.

Transform the problem into a geometric problem.
@ Solve it!
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