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Lecture on:
HJB equation and viscosity solutions

Goal: finding global solutions to optimal control problems (in
feedback form), by solving a non-linear PDE.

Issues: characterization of the value function with the
Hamilton-Jacobi-Bellman equation.
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Birkhäuser, 1997.

F. Bonnans et P. Rouchon, Commande et optimisation de
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Introduction

Our results so far were based on optimality conditions
(Pontryagin’s principle).

Now: a different approach, based on dynamic programming.
In some sense, more specific to optimal control.

The dynamic programming principle is ubiquitous in
optimization. A very general concept allowing to “split” some
problems into a family of simpler problems.

The central tool: the value function V .

Defined as the value of the optimization problem, expressed as
a function of the initial state.
Characterized as the unique viscosity solution of a non-linear
partial differential equation (PDE) called HJB equation.
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Introduction

Interest: a globally optimal solution to the problem can be
derived from V .

Limitation: curse of dimensionality.

Warning: focus on a specific class of problems.
All concepts can be extended, in particular to a stochastic
framework (finance), and to other nonlinear PDEs.
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Problem formulation

Data of the problem and assumptions:

A parameter λ > 0.

A non-empty and compact subset U of Rm.

A bounded and Lf -Lipschitz continuous mapping
f : (u, y) ∈ U × Rn → Rn, i.e.

‖f ‖∞ := sup
(u,y)∈U×Rn

‖f (u, y)‖ <∞,

‖f (u2, y2)− f (u1, y1)‖ ≤ Lf ‖(u2, y2)− (u1, y1)‖,

for all (u1, y1) and (u2, y2) ∈ U × Rn.

A bounded and L`-Lipschitz continuous mapping
` : (u, y) ∈ U × Rn → R.
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Problem formulation

Notation: for any τ ∈ [0,∞], Uτ is the set of measurable
functions from (0, τ) to U.

State equation: for x ∈ Rn and u ∈ U∞, there is a unique
solution y [u, x ] to the ODE

ẏ(t) = f (u(t), y(t)), y(0) = x ,

by the Picard-Lindelöf theorem (Cauchy-Lipschitz).

Cost function W , for u ∈ U∞ and x ∈ Rn:

W (u, x) =

∫ ∞
0

e−λt`
(
u(t), y [u, x ](t)

)
dt.

Optimal control problem and value function V :

V (x) = inf
u∈U∞

W (u, x). (P(x))
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Grönwall’s lemma

Lemma 1 (Grönwall’s lemma)

Let α > 0 and let β > 0. Let θ : [0,∞)→ R be a continuous
function such that

θ(t) ≤ α + β

∫ t

0
θ(s) ds, ∀t ∈ [0,∞).

Then, θ(t) ≤ αeβt , for all t ∈ [0,∞).

Corollary 2

Let u ∈ U∞. For all x and x̃, for all t ≥ 0, it holds:

‖y [u, x ](t)− y [u, x̃ ](t)‖ ≤ eLf t‖x − x̃‖.

Proof. Grönwall with θ = ‖y [u, x ]− y [u, x̃ ]‖, α = ‖x − x̃‖, β = Lf .
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Dynamic programming principle

Theorem 3 (Dynamic programming (DP) principle)

Let τ > 0. Then for all x ∈ Rn, abbreviating y = y [u, x ],

V (x) = inf
u∈Uτ

(∫ τ

0
e−λt`

(
u(t), y(t)

)
dt + e−λτV (y(τ))

)
. (DPP)

Interpretation:

V (x) is the value function of an optimal control problem on
the interval (0, τ).

The original integral has been truncated:∫ ∞
τ

e−λt`
(
u(t), y(t)

)
dt  e−λτV (y(τ)).

The term e−λτV (y(τ)) is the “optimal cost from τ to ∞”.
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Flow property

Lemma 4 (Flow property)

Let x ∈ Rn and let u ∈ U∞. Define:

u1 = u|(0,τ) ∈ Uτ
u2 = u|(τ,∞) ∈ L∞(τ,∞;U)

ũ2 ∈ U∞, ũ2(t) = u2(t + τ).

It holds:
y [u, x ](t) = y

[
ũ2, y [u1, x ](τ)

]
(t − τ),

for any t ≥ τ .

Remark. After time τ , one can forget u1 and only remember
y [x , u1](τ).
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Proof

Proof of the DP-principle. Let us denote

Ṽ (x) = inf
u∈Uτ

(∫ τ

0
e−λt`

(
u(t), y(t)

)
dt + e−λτV (y(τ))

)
.

Step 1: V ≥ Ṽ . Let u, u1, u2, and ũ2 be as in Lemma 4.

W (u, x) =

∫ ∞
0

e−λt`
(
u(t), y [u, x ](t)

)
dt

=

∫ τ

0
e−λt`

(
u(t), y [u, x ](t)

)
dt

+ e−λτ
∫ ∞
τ

e−λ(t−τ)`
(
u(t), y [u, x ](t)

)
dt

=

∫ τ

0
e−λt`

(
u(t), y [u, x ](t)

)
dt

+ e−λτ
∫ ∞
0

e−λs`
(
u(s + τ), y [u, x ](s + τ)

)
ds.
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Proof

We further have, for the last integral:∫ ∞
0

e−λs`
(
u(s + τ), y [u, x ](s + τ)

)
ds

=

∫ ∞
0

e−λs`
(
ũ2(s), y [ũ2, y [u1, x ](τ)](s)

)
ds

= W (ũ2, y [u1, x ](τ)) ≥ V (y [u1, x ](τ)).

Injecting in the above equality:

W (u, x) ≥
∫ τ

0
e−λt`

(
u1(t), y [u1, x ](t)

)
dt + e−λτV (y [u1, x ](τ))

≥ Ṽ (x).

Minimizing with respect to u yields V ≥ Ṽ .
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Proof

Step 2: Ṽ ≤ V . Let ε > 0. Let u1 ∈ Uτ be such that∫ τ

0
e−λt`

(
u1(t), y [u1](t)

)
dt + e−λτV (y [u1, x ](τ)) ≤ Ṽ (x) + ε/2.

Let ũ2 ∈ U∞ be such that

W (ũ2, y [u1, x ](τ)) ≤ V (y [u1, x ](τ)) + ε/2.

Let u be defined by

u(t) =

{
u1(t) for a.e. t ∈ (0, τ),

ũ2(t − τ) for a.e. t ∈ (τ,∞).
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Proof

The same calculation as above yields:

W (u, x) =

∫ τ

0
e−λt`

(
u1(t), y [u1, x ](t)

)
dt

+ e−λτ
∫ ∞
0

e−λt`
(
ũ2(t), y [ũ2(t), y [u1, x ](τ)](t)

)
dt︸ ︷︷ ︸

=W (ũ2,y [u1,x](τ)))

≤
∫ τ

0
e−λt`

(
u1(t), y [u1, x ](t)

)
dt

+ e−λτ
(
V (y [u1, x ](τ)) + ε/2

)
≤ Ṽ (x) + ε.

It follows that
V (x) ≤ Ṽ (x) + ε, ∀ε > 0.
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Decoupling

Corollary 5

Let u ∈ U∞ be a solution to P(x). Let τ > 0. Let u1 and ũ2
be defined as in Lemma 4. Then,

u1 is optimal in the DP principle
ũ2 is optimal for P(y [u1, x ](τ)).

Conversely: let u1 be a minimizer of (DPP). Let ũ2 be a
solution to P(y [u1, x ])(τ). Let u ∈ U∞ be defined by

u(t) =

{
u1(t) for a.e. t ∈ (0, τ)

ũ2(t − τ) for a.e. t ∈ (τ,∞).

Then u is a solution to P(x).

What can we do with the value function? If V is known, then the
DP-principle allows to decouple the problem in time.
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Regularity of V

Lemma 6

The value function V is bounded. It is also uniformly continuous,
that is, for all ε > 0, there exists α > 0 such that for all x and
x̃ ∈ Rn,

‖x̃ − x‖ ≤ α =⇒ |V (x̃)− V (x)| ≤ ε.

Proof. Step 1: proof of boundedness. Let x ∈ Rn and u ∈ U∞.
We have

|W (x , u)| ≤
∫ ∞
0

e−λt‖`‖∞ dt ≤ 1

λ
‖`‖∞.

Thus |V (x)| ≤ 1
λ‖`‖∞.
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Regularity of V

Step 2: proof of uniform continuity. Let ε > 0. Let α > 0. Let x
and x̃ be such that ‖x̃ − x‖ ≤ α, we will specify α later. We have:

|V (x̃)− V (x)| =
∣∣ inf
u∈U∞

W (x̃ , u)− inf
u∈U∞

W (x , u)
∣∣

≤ sup
u∈U∞

∣∣W (x̃ , u)−W (x , u)
∣∣ ≤ ∆1 + ∆2,

where

∆1 = sup
u∈U∞

∫ τ

0
e−λt

∣∣`(u(t), ỹ(t))− `(u(t), y(t))
∣∣ dt

∆2 = sup
u∈U∞

∫ ∞
τ

e−λt
∣∣`(u(t), ỹ(t))− `(u(t), y(t))

∣∣ dt,

where ỹ = y [x̃ , u] and y = y [x , u] and where τ > 0 is arbitrary.
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Regularity of V

Bound of ∆1. By Corollary 2,

‖ỹ(t)− y(t)‖ ≤ eLf t‖x̃ − x‖ ≤ eLf τα, ∀t ∈ [0, τ ].

Therefore, ∆1 ≤ τL`eLf τα.

Bound of ∆2. Since ` is bounded,

∆2 ≤ 2‖`‖∞
∫ ∞
τ

e−λt dt =
2‖`‖∞
λ

e−λτ .

Conclusion: take τ > 0 sufficiently large, so that ∆2 ≤ ε
2 .

Take then α sufficiently small, so that ∆1 ≤ ε
2 .

The construction of α is independent of x and x̃ .
We have |V (x)− V (x̃)| ≤ ε.
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(More) regularity of V

Lemma 7

We have

if λ < Lf , then V is (λ/Lf )-Hölder continuous

if λ = Lf , then V is α-Hölder continuous for all α ∈ (0, 1)

if λ > Lf , then V is Lipschitz continuous.
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(More) regularity of V

Proof of the last case. We have

|V (x̃)− V (x)| ≤ sup
u∈U∞

∫ ∞
0

e−λt |`(u(t), ỹ(t))− `(u(t), y(t))| dt

≤ sup
u∈U∞

∫ ∞
0

e−λtL`‖ỹ(t)− y(t)‖ dt

≤
∫ ∞
0

e−λtL`e
Lf t‖x̃ − x‖ dt

≤ L`
λ− Lf

‖x̃ − x‖.
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DP-mapping

Notation: BUC (Rn) is the set of bounded and uniformly
continuous functions from Rn to R.

Lemma 8

The space BUC (Rn), equipped with the uniform norm (denoted
‖ · ‖∞) is a Banach space.

Fix τ > 0. Consider the “DP-mapping” (also called Bellman
operator):

T : v ∈ BUC (Rn) 7→ T v ∈ BUC (Rn),

defined by

T v(x) = inf
u∈Uτ

(∫ τ

0
e−λt`(u(t), y(t)) dt + e−λτv(y(τ))

)
,

where y = y [u, x ].
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DP-mapping

Let v ∈ BUC (Rn). Let us verify that T v ∈ BUC (Rn). Clearly T v
is bounded.

Let ε > 0. Let α0 > 0 be such that

‖x̃ − x‖ ≤ α0 =⇒ |v(x̃)− v(x)| ≤ ε/2.

Let α > 0. Let x and x̃ ∈ Rn be such that ‖x̃ − x‖ ≤ α. The value
of α will be fixed later.

For all u ∈ Uτ , for all t ∈ [0, τ ], we have

‖y [u, x̃ ](t)− y [u, x ](t)‖ ≤ eLf t‖x̃ − x‖ ≤ eLf τα.

We have |T v(x̃)− T v(x)| ≤ ∆1 + ∆2, with...
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DP-mapping

∆1 = sup
u∈Uτ

∣∣∣ ∫ τ

0
e−λt`(u(t), y(t)) dt −

∫ τ

0
e−λt`(u(t), ỹ(t)) dt

∣∣∣,
∆2 = sup

u∈Uτ

∣∣e−λτv(ỹ(τ))− e−λτv(y(τ))
∣∣.

We fix now
α = e−Lf τ min

(
α0,

ε

2τ

)
.

We have

∆1 ≤ τL`eτLf α ≤ ε/2 and ∆2 ≤ ε/2,

since ‖ỹ(τ)− y(τ)‖ ≤ eLf τα ≤ α0. Therefore,

|T v(x̃)− T v(x)| ≤ ε.
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DP-mapping

Lemma 9

The operator T is Lipschitz continuous with modulus e−λτ .

Proof. Let x ∈ Rn. We have

|T ṽ(x)− T v(x)| ≤ sup
u∈Uτ

∣∣e−λτ ṽ(y [x , u](τ))− e−λτv(y [x , u](τ))
∣∣

≤ e−λτ‖ṽ − v‖∞.

We conclude that

‖T ṽ − T v‖∞ ≤ e−λτ‖ṽ − v‖∞.
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A characterization of V

Lemma 10

The value function V is the unique solution of the fixed-point
equation:

T v = v , v ∈ BUC (Rn).

Proof.

Existence: direct consequence of the DP principle (V = T V ).

Uniqueness: for any v such that v = T v , we have

‖v − V ‖∞ = ‖T v − T V ‖∞ ≤ e−λτ‖v − V ‖∞.

Thus v = V .

Remark: the dynamic programming principle entirely characterises
the value function!



Introduction Dynamic programming 1st characterization Classical HJB Viscosity solutions

Min-plus linearity

Notation. Given v1 and v2 ∈ BUC (Rn), we write v1 ≤ v2 if
v1(x) ≤ v2(x) for all x ∈ Rn. We define min(v1, v2) ∈ BUC (Rn) by

min(v1, v2)(x) = min(v1(x), v2(x)), ∀x ∈ Rn.

Given α ∈ R, we define v1 + α by (v1 + α)(x) = v1(x) + α.

Lemma 11

Let v1 and v2 ∈ BUC (Rn). Let α ∈ R. The map T is monotone:

v1 ≤ v2 =⇒ T v1 ≤ T v2

and min-plus linear:

min(T v1, T v2) = T min(v1, v2), T (v + α) = (T v) + e−λτα.

Proof: exercise.
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Hamiltonian

We define the pre-Hamiltonian H and the Hamiltonian H by

H(u, x , p) = `(u, x) + 〈p, f (u, x)〉,
H(x , p) = min

u∈U
H(u, x , p).

Lemma 12

The mapping H is continuous, concave with respect to p, and
Lipschitz continuous with respect to p with modulus ‖f ‖∞.

Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As
an infimum of concave functions, H is concave. We have:

|H(x , p̃)−H(x , p)| ≤ sup
u∈U

|H(u, x , p̃)− H(u, x , p)|

≤ sup
u∈U

|〈p̃ − p, f (u, x)〉| ≤ ‖p̃ − p‖ · ‖f ‖∞.
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Informal derivation

Notation: C 1(Rn), the set of continuously differentiable functions
from Rn to R.

Lemma 13

Let Φ ∈ C 1(Rn). Let x ∈ Rn, let u ∈ U∞, let y = y [u, x ].
Consider the mapping:

ϕ : τ ∈ [0,∞) 7→
∫ τ

0
e−λt`(u(t), y(t)) dt + e−λτΦ(y(τ))− Φ(x).

Then ϕ(0) = 0 and ϕ ∈W 1,∞(0,∞) with

ϕ̇(τ) = e−λτ
(
H(u(τ), y(τ),∇Φ(y(τ)))− λΦ(y(τ))

)
. (∗)

In particular: ϕ̇(0) = H(u(0), x ,∇Φ(x))− λΦ(x) (if u is
continuous at 0).
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Informal derivation

Proof. To simplify, we only consider the case where u is
continuous, so that y is C 1 and ϕ is C 1(Rn). We have then:

ϕ̇(τ) = e−λτ `(u(τ), y(τ)) + e−λτ 〈∇Φ(y(τ)), ẏ(τ)〉
− λe−λτΦ(y(τ))

= e−λτ
[
`(u(τ), y(τ)) + 〈∇Φ(y(τ)), f (u(τ), y(τ))〉

]
− λe−λτΦ(y(τ))

= e−λτ
[
H(u(τ), y(τ),∇Φ(y(τ)))− λΦ(y(τ))

]
.
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HJB in the classical sense

Theorem 14

Let x ∈ Rn. Assume that

V is continuously differentiable in a neighborhood of x

P(x) has a solution ū which is continuous at time 0.

Then,
λV (x)−H(x ,∇V (x)) = 0,

ū(0) ∈ argmin
u0∈U

H(u0, x ,∇V (x)).
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HJB in the classical sense

Proof. Step 1. Let u0 ∈ U, let u be the constant control equal to
u0, let y = y [u, x ]. By the dynamic programming principle, we
have:

0 ≤ ϕ(τ) :=

∫ τ

0
e−λt`(u(t), y(t)) dt + e−λτV (y(τ))− V (x),

for all τ . Since ϕ(0) = 0, we deduce from (∗) that:

0 ≤ ϕ̇(0) = H(u0, x ,∇V (x))− λV (x).

Therefore,

0 ≤ H(u0, x ,∇V (x))− λV (x), ∀u0 ∈ U.
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HJB in the classical sense

Step 2. Let us apply the dynamic programming principle again.
Redefining ϕ and setting ȳ = y [ū, x ], we obtain:

0 = ϕ(τ) :=

∫ τ

0
e−λt`(ū(t), ȳ(t)) dt + e−λτV (ȳ(τ))− V (x),

for all τ ≥ 0. It follows that

0 = H(ū(0), x ,∇V (x))− λV (x).

Step 3. It follows that

H(ū(0), x ,∇V (x)) = λV (x) ≤ H(u0, x ,∇V (x)), ∀u0 ∈ U.

Therefore, H(ū(0), x ,∇V (x)) = H(x ,∇V (x)).
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HJB in the classical sense

Corollary 15

Let t ≥ 0, assume that ū is continuous in a neighborhood of t and
that V is C 1 in a neighborhood of ȳ(t), where ȳ := y [ū, x ]. Then,

ū(t) ∈ argmin
u0∈U

H(u0, ȳ(t),∇V (ȳ(t))).
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HJB in the classical sense

Remarks.
Let us define the Q-function by Q(u, y) := H(u, y ,∇V (y)),
assuming that V ∈ C 1(Rn).

If the minimizer is unique in the following relation, we have a
feedback law:

ū(t) = argmin
U

Q(·, ȳ(t)).

In some cases, one can show that ∇V (ȳ(t)) = p(t), where p
is defined by some adjoint equation → Pontryagin’s
principle.

In Reinforcement Learning, the approximation of Q is a
central objective.
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We will call the equation

λv(x)−H(x ,∇v(x)) = 0, ∀x ∈ Rn (HJB)

Hamilton-Jacobi-Bellman equation, with unknown v : Rn → R.

Remarks.

In general V is not differentiable → in which sense is the
HJB equation to be understood?

In Theorem 14, we have shown that

ū(t) ∈ argminH(u0, y [ū(t), x ],∇V (y [ū(t), x ])),

(under restrictive assumptions). We will see next that this
necessary condition is also sufficient.
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Theorem 16 (Verification)

Let us assume the assumptions of Theorem 14 hold for all x ∈ Rn,
so that the HJB equation is satisfied in the classical sense. Let
x ∈ Rn. Assume that there exists a control ū such that

ū(t) ∈ argmin
u0∈U

H(u0, ȳ(t),∇V (ȳ(t))),

where ȳ = y [ū, x ]. Then ū is globally optimal.



Introduction Dynamic programming 1st characterization Classical HJB Viscosity solutions

Proof. Consider the function:

ϕ(τ) =

∫ τ

0
e−λt`(ū(t), ȳ(t)) dt + e−λτV (ȳ(τ))− V (x).

We have ϕ(0) = 0. Using (∗) and Theorem 14, we obtain:

ϕ̇(τ) = e−λτ
[
H(ū(τ), ȳ(τ),∇V (ȳ(τ))− V (ȳ(τ))

]
= e−λτ

[
H(ȳ(τ),∇V (ȳ(τ)))− V (ȳ(τ))

]
= 0.

Thus ϕ is constant, equal to 0. Its limit is given by:

0 =

∫ ∞
0

e−λt`(ū(t), ȳ(t)) dt − V (x) = W (x , ū)− V (x),

proving the optimality of ū.
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Abstract PDE

We consider an abstract PDE of the form:

F(x , v(x),∇v(x)) = 0, ∀x ∈ Rn,

where F : Rn × R× Rn → R is continuous.

It contains the HJB equation with

F(x , v , p) = λv −H(x , p).

Goal of the section: showing that V is a viscosity solution to the
HJB equation.
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Sub- and super-differentials

Definition 17

Let v : Rn → R. The following sets are called sub- and
superdifferential, respectively:

D−v(x) =
{
p ∈ Rn | lim inf

y→x

v(y)− v(x)− 〈p, y − x〉
‖y − x‖

≥ 0
}

D+v(x) =
{
p ∈ Rn | lim sup

y→x

v(y)− v(x)− 〈p, y − x〉
‖y − x‖

≤ 0
}
.

Exercise. Let v(x) = |x |. Show that D−v(0) = [−1, 1].
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Sub- and super-differentials

We have the following characterization.

Lemma 18

Let v : Rn → R be continuous. Let p ∈ Rn.

p ∈ D−v(x)⇐⇒ there exists Φ ∈ C 1(Rn) such that
∇Φ(x) = p and v − Φ has a local minimum in x.

p ∈ D+v(x)⇐⇒ there exists Φ ∈ C 1(Rn) such that
∇Φ(x) = p and v − Φ has a local maximum in x.

Proof. The implication =⇒ is admitted. The implication ⇐= is
left as an exercise.
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Remark. In the above lemma, one can chose Φ(x) = v(x) without
loss of generality. Thus, we have:

(v − Φ) has a local minimum in x ⇐⇒ v − Φ is nonnegative
in a neighborhood of x ⇐⇒ v is locally bounded from below
by Φ

(v − Φ) has a local maximum in x ⇐⇒ v − Φ is nonpositive
in a neighborhood of x ⇐⇒ v is locally bounded from above
by Φ

Remark. If v is Fréchet differentiable at x , then the sub- and
superdifferential are equal to {∇v(x)}.
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Definition 19

Let v : Rn → R. We call v a viscosity subsolution if

F(x , v(x), p) ≤ 0, ∀x ∈ Rn, ∀p ∈ D+v(x)

or, equivalently, if for all Φ ∈ C 1(Rn) such that v − Φ has a local
maximum in x ,

F(x , v(x),∇Φ(x)) ≤ 0.
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Definition 20

Let v : Rn → R. We call v a viscosity supersolution if

F(x , v(x), p) ≥ 0, ∀p ∈ D−v(x)

or, equivalently, if for all Φ ∈ C 1(Rn) such that v − Φ has a local
minimum in x ,

F(x , v(x),∇Φ(x)) ≥ 0.

We call v a viscosity solution if it is a sub- and a supersolution.
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Viscosity solutions

Theorem 21

The value function V is a viscosity solution of the HJB equation.

Step 1: V is a subsolution. Let x ∈ Rn, let Φ ∈ C 1(Rn) be such
that V − Φ has a local maximizer in x and V (x) = Φ(x).
We have to prove that

λv(x)−H(x ,∇Φ(x)) ≤ 0.

Let u0 ∈ U, let u be the constant control equal to u0 and let
y = y [u, x ]. By the DPP, we have:

V (x) ≤
∫ τ

0
e−λt`(u0, y(t)) dt + e−λτV (y(τ)).

If τ is sufficiently small, we have V (y(τ)) ≤ Φ(y(τ)).
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This implies that for τ sufficiently small,

0 ≤
∫ τ

0
e−λt`(u0, y(t)) dt + e−λτΦ(y(τ))− Φ(x) =: ϕ(τ).

Since ϕ(0) = 0, we deduce with (∗) that

0 ≤ ϕ̇(0) = H(u0, x ,∇Φ(x))− λV (x).

Minimizing with respect to u0 ∈ U, we obtain:

0 ≤ H(x ,∇Φ(x))− λV (x),

as was to be proved.
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Step 2: V is supersolution. Let x ∈ Rn, let Φ ∈ C 1(Rn) be such
that V −Φ has a local minimizer in x and such that V (x) = Φ(x).
We have to prove that

λV (x)−H(x ,∇Φ(x)) ≤ 0.

It follows from the dynamic programming principle that for τ > 0
small enough

Φ(x) ≥ inf
u∈Uτ

∫ τ

0
e−λt`(u(t), y [x , u](t)) dt + e−λtΦ(y [x , u](τ))︸ ︷︷ ︸

=:ϕ[u](τ)

.
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Thus by Lemma 13,

0 ≥ inf
u∈U∞

∫ τ

0
ϕ̇[u](t) dt

= inf
u∈U∞

∫ τ

0
e−λt

(
H(u(t), y [u](t),∇Φ(y [u](t))− λΦ(y [u](t)

)
dt

≥ inf
u∈U∞

∫ τ

0
e−λt

(
H(y [u](t),∇Φ(y [u](t))− λΦ(y [u](t)

)︸ ︷︷ ︸
=:ψ[u](t)

dt.

We have ψ[u](0) = H(x ,∇Φ(x))− λV (x), in particular, ψ[u](0)
does not depend on u.
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Let ε > 0. There exists (exercise!) τ > 0 such that

|ψ[u](t)− ψ[u](0)| ≤ ε, ∀t ∈ [0, τ ], ∀u ∈ U∞.

The previous inequality yields

0 ≥ inf
u∈U∞

∫ τ

0

(
ψ[u](0)− ε

)
dt

≥ τ(H(x ,∇Φ(x))− λV (x)− ε).

Dividing by τ and sending ε to 0, we obtain that

λV (x)−H(x ,∇Φ(x)) ≤ 0.



Introduction Dynamic programming 1st characterization Classical HJB Viscosity solutions

Viscosity solutions

Theorem 22 (Comparison principle)

Let v1 be a subsolution to the HJB equation. Let v2 be a
supersolution to the HJB equation. Then

v1(x) ≤ v2(x), ∀x ∈ Rn.

Proof: admitted.

Corollary 23

The value function V is the unique viscosity solution.

Proof. By the comparison principle, any viscosity solution v is such
that v ≤ V and v ≥ V .
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