troduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solution

Optimal Control of Ordinary Differential Equations SOD 311

Laurent Pfeiffer Inria and CentraleSupélec

Ensta-Paris Paris-Saclay University

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions

Lecture on: HJB equation and viscosity solutions

 Goal: finding global solutions to optimal control problems (in feedback form), by solving a non-linear PDE.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Issues: characterization of the value function with the Hamilton-Jacobi-Bellman equation.

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Bibliogra	phy			

The following references are related to Chapter 3:

- M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, 1997.
- F. Bonnans et P. Rouchon, Commande et optimisation de systèmes dynamiques, Editions de l'Ecole Polytechnique, 2005. (Partie 3, Chapitres 3 et 4).

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
00000				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- 2 Dynamic programming principle
- 3 A first characterization of the value function
- 4 HJB equation: the classical sense
- 5 HJB equation: viscosity solutions

Introduction ○●0000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Introduct	ion			

- Our results so far were based on optimality conditions (Pontryagin's principle).
- Now: a different approach, based on dynamic programming. In some sense, more specific to optimal control.
- The dynamic programming principle is ubiquitous in optimization. A very general concept allowing to "split" some problems into a family of simpler problems.
- The central tool: the value function V.
 - Defined as the value of the optimization problem, expressed as a function of the initial state.
 - Characterized as the unique viscosity solution of a non-linear partial differential equation (PDE) called HJB equation.

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Introduct	tion			

- Interest: a globally optimal solution to the problem can be derived from V.
- Limitation: curse of dimensionality.
- Warning: focus on a specific class of problems.
 All concepts can be extended, in particular to a stochastic framework (finance), and to other nonlinear PDEs.

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Problem f	formulation			

Data of the problem and assumptions:

- A parameter $\lambda > 0$.
- A non-empty and compact subset U of \mathbb{R}^m .
- A bounded and L_f -Lipschitz continuous mapping $f: (u, y) \in U \times \mathbb{R}^n \to \mathbb{R}^n$, i.e.

 $\|f\|_{\infty} := \sup_{(u,y)\in U\times\mathbb{R}^n} \|f(u,y)\| < \infty,$

 $||f(u_2, y_2) - f(u_1, y_1)|| \le L_f ||(u_2, y_2) - (u_1, y_1)||,$

for all (u_1, y_1) and $(u_2, y_2) \in U \times \mathbb{R}^n$.

• A bounded and L_{ℓ} -Lipschitz continuous mapping $\ell : (u, y) \in U \times \mathbb{R}^n \to \mathbb{R}.$

Droblom	formulation			
Introduction	Dynamic programming	1st characterization	Classical HJB 000000000000	Viscosity solutions

- Notation: for any $\tau \in [0, \infty]$, \mathcal{U}_{τ} is the set of measurable functions from $(0, \tau)$ to U.
- State equation: for x ∈ ℝⁿ and u ∈ U_∞, there is a unique solution y[u, x] to the ODE

 $\dot{y}(t) = f(u(t), y(t)), \quad y(0) = x,$

by the Picard-Lindelöf theorem (Cauchy-Lipschitz).

• Cost function W, for $u \in \mathcal{U}_{\infty}$ and $x \in \mathbb{R}^n$:

$$W(u,x) = \int_0^\infty e^{-\lambda t} \ell(u(t), y[u,x](t)) \,\mathrm{d}t.$$

• Optimal control problem and value function V:

$$V(x) = \inf_{u \in \mathcal{U}_{\infty}} W(u, x). \tag{P(x)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
○0000●	00000000	00000000000	000000000000	
Crönwall'	c lommo			

Lemma 1 (Grönwall's lemma)

Let $\alpha > 0$ and let $\beta > 0$. Let $\theta : [0, \infty) \to \mathbb{R}$ be a continuous function such that

$$heta(t) \leq lpha + eta \int_0^t heta(s) \, ds, \quad orall t \in [0,\infty).$$

Then, $\theta(t) \leq \alpha e^{\beta t}$, for all $t \in [0, \infty)$.

Corollary 2

Let $u \in \mathcal{U}_{\infty}$. For all x and \tilde{x} , for all $t \ge 0$, it holds:

 $\|y[u,x](t)-y[u,\tilde{x}](t)\|\leq e^{L_f t}\|x-\tilde{x}\|.$

Proof. Grönwall with $\theta = ||y[u, x] - y[u, \tilde{x}]||$, $\alpha = ||x - \tilde{x}||$, $\beta = L_f$.

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
	0000000			

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

2 Dynamic programming principle

3 A first characterization of the value function

4 HJB equation: the classical sense

5 HJB equation: viscosity solutions

Dynamic programming principle

Theorem 3 (Dynamic programming (DP) principle)

Let $\tau > 0$. Then for all $x \in \mathbb{R}^n$, abbreviating y = y[u, x],

$$V(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_0^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt + e^{-\lambda \tau} V(y(\tau)) \right). \quad (DPP)$$

Interpretation:

- V(x) is the value function of an optimal control problem on the interval (0, τ).
- The original integral has been truncated:

$$\int_{\tau}^{\infty} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t \qquad \rightsquigarrow \qquad e^{-\lambda \tau} V(y(\tau)).$$

The term $e^{-\lambda \tau} V(y(\tau))$ is the "optimal cost from τ to ∞ ".

Introduction 000000	Dynamic programming ○0●00000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Flow pro	pertv			

Lemma 4 (Flow property)

Let
$$x \in \mathbb{R}^n$$
 and let $u \in \mathcal{U}_\infty$. Define:
 $u_1 = u_{|(0,\tau)} \in \mathcal{U}_\tau$
 $u_2 = u_{|(\tau,\infty)} \in L^\infty(\tau,\infty; U)$
 $\tilde{u}_2 \in \mathcal{U}_\infty, \ \tilde{u}_2(t) = u_2(t+\tau).$

It holds:

$$y[u,x](t) = y\big[\tilde{u}_2, y[u_1,x](\tau)\big](t-\tau),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for any $t \geq \tau$.

Remark. After time τ , one can forget u_1 and only remember $y[x, u_1](\tau)$.

Introduction 000000	Dynamic programming 000●0000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Proof				

Proof of the DP-principle. Let us denote

$$ilde{V}(x) = \inf_{u \in \mathcal{U}_{\tau}} \Big(\int_0^{\tau} e^{-\lambda t} \ell\big(u(t), y(t)\big) \,\mathrm{d}t + e^{-\lambda \tau} V(y(\tau)) \Big).$$

Step 1: $V \ge \tilde{V}$. Let u, u_1 , u_2 , and \tilde{u}_2 be as in Lemma 4.

$$W(u, x) = \int_0^\infty e^{-\lambda t} \ell(u(t), y[u, x](t)) dt$$

= $\int_0^\tau e^{-\lambda t} \ell(u(t), y[u, x](t)) dt$
+ $e^{-\lambda \tau} \int_{\tau}^\infty e^{-\lambda(t-\tau)} \ell(u(t), y[u, x](t)) dt$
= $\int_0^\tau e^{-\lambda t} \ell(u(t), y[u, x](t)) dt$
+ $e^{-\lambda \tau} \int_0^\infty e^{-\lambda s} \ell(u(s+\tau), y[u, x](s+\tau)) ds.$

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	○○○○●○○○	00000000000	00000000000	
Proof				

We further have, for the last integral:

$$\begin{split} \int_0^\infty e^{-\lambda s} \ell\big(u(s+\tau), y[u,x](s+\tau)\big) \,\mathrm{d}s \\ &= \int_0^\infty e^{-\lambda s} \ell\big(\tilde{u}_2(s), y[\tilde{u}_2, y[u_1,x](\tau)](s)\big) \,\mathrm{d}s \\ &= W(\tilde{u}_2, y[u_1,x](\tau)) \geq V(y[u_1,x](\tau)). \end{split}$$

Injecting in the above equality:

$$egin{aligned} W(u,x) &\geq \int_0^ au e^{-\lambda t} \ellig(u_1(t),y[u_1,x](t)ig) \,\mathrm{d}t + e^{-\lambda au} V(y[u_1,x](au)) \ &\geq ilde V(x). \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimizing with respect to u yields $V \ge \tilde{V}$.

Introduction 000000	Dynamic programming ○○○○○●○○	1st characterization	Classical HJB 000000000000	Viscosity solutions
Proof				

Step 2:
$$\tilde{V} \leq V$$
. Let $\varepsilon > 0$. Let $u_1 \in \mathcal{U}_{\tau}$ be such that

$$\int_0^\tau e^{-\lambda t} \ell\big(u_1(t), y[u_1](t)\big) \, \mathrm{d}t + e^{-\lambda \tau} V(y[u_1, x](\tau)) \leq \tilde{V}(x) + \varepsilon/2.$$

Let $\tilde{\textit{u}}_2 \in \mathcal{U}_\infty$ be such that

$$W(\tilde{u}_2, y[u_1, x](\tau)) \leq V(y[u_1, x](\tau)) + \varepsilon/2.$$

Let u be defined by

$$u(t)= \left\{egin{array}{cc} u_1(t) & ext{ for a.e. } t\in(0, au), \ \widetilde{u}_2(t- au) & ext{ for a.e. } t\in(au,\infty). \end{array}
ight.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	○00000●0	00000000000	000000000000	
Proof				

The same calculation as above yields:

$$W(u, x) = \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt$$

+ $e^{-\lambda \tau} \int_0^\infty e^{-\lambda t} \ell(\tilde{u}_2(t), y[\tilde{u}_2(t), y[u_1, x](\tau)](t)) dt$
= $W(\tilde{u}_2, y[u_1, x](\tau)))$
 $\leq \int_0^\tau e^{-\lambda t} \ell(u_1(t), y[u_1, x](t)) dt$
+ $e^{-\lambda \tau} (V(y[u_1, x](\tau)) + \varepsilon/2)$
 $\leq \tilde{V}(x) + \varepsilon.$

It follows that

$$V(x) \leq \tilde{V}(x) + \varepsilon, \quad \forall \varepsilon > 0.$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Introduction 000000	Dynamic programming ○000000●	1st characterization	Classical HJB 000000000000	Viscosity solutions
Decoupli	าฮ			

Corollary 5

Let u ∈ U_∞ be a solution to P(x). Let τ > 0. Let u₁ and ũ₂ be defined as in Lemma 4. Then,
 u₁ is optimal in the DP principle

- \tilde{u}_2 is optimal for $P(y[u_1, x](\tau))$.
- Conversely: let u₁ be a minimizer of (DPP). Let ũ₂ be a solution to P(y[u₁, x])(τ). Let u ∈ U∞ be defined by

$$u(t) = egin{cases} u_1(t) & ext{ for a.e. } t \in (0, au) \ \widetilde{u}_2(t- au) & ext{ for a.e. } t \in (au,\infty). \end{cases}$$

Then u is a solution to P(x).

What can we do with the value function? If V is known, then the DP-principle allows to **decouple** the problem in time.

0000000 00000000 000000000 00000000 0000	Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
			00000000000		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Introduction

2 Dynamic programming principle

3 A first characterization of the value function

4 HJB equation: the classical sense

5 HJB equation: viscosity solutions

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	○●0000000000	000000000000	
Regularit	v of V			

Lemma 6

The value function V is bounded. It is also uniformly continuous, that is, for all $\varepsilon > 0$, there exists $\alpha > 0$ such that for all x and $\tilde{x} \in \mathbb{R}^n$,

 $\|\tilde{x} - x\| \le \alpha \Longrightarrow |V(\tilde{x}) - V(x)| \le \varepsilon.$

Proof. Step 1: proof of boundedness. Let $x \in \mathbb{R}^n$ and $u \in \mathcal{U}_{\infty}$. We have

$$|W(x,u)| \leq \int_0^\infty e^{-\lambda t} \|\ell\|_\infty \,\mathrm{d}t \leq rac{1}{\lambda} \|\ell\|_\infty.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus $|V(x)| \leq \frac{1}{\lambda} \|\ell\|_{\infty}$.

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	00000000000	00000000000	
Regularity	of V			

Step 2: proof of uniform continuity. Let $\varepsilon > 0$. Let $\alpha > 0$. Let x and \tilde{x} be such that $\|\tilde{x} - x\| \le \alpha$, we will specify α later. We have:

$$egin{aligned} |V(ilde{x})-V(x)|&=ig|\inf_{u\in\mathcal{U}_{\infty}}W(ilde{x},u)-\inf_{u\in\mathcal{U}_{\infty}}W(x,u)ig|\ &\leq\sup_{u\in\mathcal{U}_{\infty}}ig|W(ilde{x},u)-W(x,u)ig|\leq\Delta_{1}+\Delta_{2}, \end{aligned}$$

where

$$\begin{split} \Delta_1 &= \sup_{u \in \mathcal{U}_{\infty}} \int_0^{\tau} e^{-\lambda t} \big| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \big| \, \mathrm{d}t \\ \Delta_2 &= \sup_{u \in \mathcal{U}_{\infty}} \int_{\tau}^{\infty} e^{-\lambda t} \big| \ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t)) \big| \, \mathrm{d}t, \end{split}$$

where $\tilde{y} = y[\tilde{x}, u]$ and y = y[x, u] and where $\tau > 0$ is arbitrary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	0000000000	00000000000	
Regularity	v of V			

Bound of Δ_1 . By Corollary 2,

 $\|\tilde{y}(t)-y(t)\| \leq e^{L_f t} \|\tilde{x}-x\| \leq e^{L_f \tau} \alpha, \quad \forall t \in [0,\tau].$

Therefore, $\Delta_1 \leq \tau L_\ell e^{L_f \tau} \alpha$.

Bound of Δ_2 . Since ℓ is bounded,

$$\Delta_2 \leq 2 \|\ell\|_{\infty} \int_{ au}^{\infty} e^{-\lambda t} \, \mathrm{d}t = rac{2 \|\ell\|_{\infty}}{\lambda} e^{-\lambda au}$$

A D N A 目 N A E N A E N A B N A C N

Conclusion: take $\tau > 0$ sufficiently large, so that $\Delta_2 \leq \frac{\varepsilon}{2}$. Take then α sufficiently small, so that $\Delta_1 \leq \frac{\varepsilon}{2}$. The construction of α is independent of x and \tilde{x} . We have $|V(x) - V(\tilde{x})| \leq \varepsilon$.

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
(More) re	egularity of V			

Lemma 7

We have

- if $\lambda < L_f$, then V is (λ/L_f) -Hölder continuous
- if $\lambda = L_f$, then V is α -Hölder continuous for all $\alpha \in (0, 1)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• if $\lambda > L_f$, then V is Lipschitz continuous.

Proof of the last case. We have

$$\begin{aligned} |V(\tilde{x}) - V(x)| &\leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} |\ell(u(t), \tilde{y}(t)) - \ell(u(t), y(t))| \, \mathrm{d}t \\ &\leq \sup_{u \in \mathcal{U}_{\infty}} \int_{0}^{\infty} e^{-\lambda t} L_{\ell} \|\tilde{y}(t) - y(t)\| \, \mathrm{d}t \\ &\leq \int_{0}^{\infty} e^{-\lambda t} L_{\ell} e^{L_{f}t} \|\tilde{x} - x\| \, \mathrm{d}t \\ &\leq \frac{L_{\ell}}{\lambda - L_{f}} \|\tilde{x} - x\|. \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	○000000000000	000000000000	
DP-mapp	oing			

Notation: $BUC(\mathbb{R}^n)$ is the set of **bounded and uniformly continuous** functions from \mathbb{R}^n to \mathbb{R} .

Lemma 8

The space $BUC(\mathbb{R}^n)$, equipped with the uniform norm (denoted $\|\cdot\|_{\infty}$) is a Banach space.

Fix $\tau > 0$. Consider the "**DP-mapping**" (also called Bellman operator):

$$\mathcal{T} \colon v \in BUC(\mathbb{R}^n) \mapsto \mathcal{T} v \in BUC(\mathbb{R}^n),$$

defined by

wh

$$\mathcal{T}v(x) = \inf_{u \in \mathcal{U}_{\tau}} \left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t + e^{-\lambda \tau} v(y(\tau)) \right),$$

ere $y = y[u, x].$

Introduction 000000	Dynamic programming	1st characterization ○000000000000	Classical HJB 000000000000	Viscosity solutions
DP-mapp	ing			

Let $v \in BUC(\mathbb{R}^n)$. Let us verify that $\mathcal{T}v \in BUC(\mathbb{R}^n)$. Clearly $\mathcal{T}v$ is bounded.

Let $\varepsilon > 0$. Let $\alpha_0 > 0$ be such that

$$\|\tilde{x} - x\| \le \alpha_0 \Longrightarrow |v(\tilde{x}) - v(x)| \le \varepsilon/2.$$

Let $\alpha > 0$. Let x and $\tilde{x} \in \mathbb{R}^n$ be such that $\|\tilde{x} - x\| \le \alpha$. The value of α will be fixed later.

For all $u \in U_{\tau}$, for all $t \in [0, \tau]$, we have

$$\|y[u,\tilde{x}](t)-y[u,x](t)\|\leq e^{L_f t}\|\tilde{x}-x\|\leq e^{L_f \tau}\alpha.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have $|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \Delta_1 + \Delta_2$, with...

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	○000000000000000000000000000000000000	000000000000	
DP-mapp	oing			

$$\Delta_{1} = \sup_{u \in \mathcal{U}_{\tau}} \Big| \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) dt - \int_{0}^{\tau} e^{-\lambda t} \ell(u(t), \tilde{y}(t)) dt \Big|,$$

$$\Delta_{2} = \sup_{u \in \mathcal{U}_{\tau}} \Big| e^{-\lambda \tau} v(\tilde{y}(\tau)) - e^{-\lambda \tau} v(y(\tau)) \Big|.$$

$$\alpha = e^{-L_f \tau} \min\left(\alpha_0, \frac{\varepsilon}{2\tau}\right).$$

We have

$$\Delta_1 \leq au L_\ell e^{ au L_f} lpha \leq arepsilon/2 \quad ext{and} \quad \Delta_2 \leq arepsilon/2,$$

since $\|\tilde{y}(\tau) - y(\tau)\| \le e^{L_f \tau} \alpha \le \alpha_0$. Therefore,

$$|\mathcal{T}v(\tilde{x}) - \mathcal{T}v(x)| \leq \varepsilon.$$

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	000000000000	00000000000	
DP-mapp	ing			

Lemma 9

The operator \mathcal{T} is Lipschitz continuous with modulus $e^{-\lambda \tau}$.

Proof. Let $x \in \mathbb{R}^n$. We have

$$egin{aligned} |\mathcal{T} ilde{v}(x)-\mathcal{T}v(x)|&\leq \sup_{u\in\mathcal{U}_{ au}}\left|e^{-\lambda au} ilde{v}(y[x,u](au))-e^{-\lambda au}v(y[x,u](au))
ight|\ &\leq e^{-\lambda au}\| ilde{v}-v\|_{\infty}. \end{aligned}$$

We conclude that

$$\|\mathcal{T}\widetilde{\mathbf{v}}-\mathcal{T}\mathbf{v}\|_{\infty}\leq e^{-\lambda au}\|\widetilde{\mathbf{v}}-\mathbf{v}\|_{\infty}.$$

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions	
000000	0000000	○○○○○○○○○●○	000000000000		
A characterization of V					

Lemma 10

The value function V is the unique solution of the fixed-point equation:

$$\mathcal{T}\mathbf{v}=\mathbf{v}, \quad \mathbf{v}\in BUC(\mathbb{R}^n).$$

Proof.

- Existence: direct consequence of the DP principle (V = TV).
- Uniqueness: for any v such that v = Tv, we have

$$\|oldsymbol{v}-oldsymbol{V}\|_{\infty}=\|\mathcal{T}oldsymbol{v}-\mathcal{T}oldsymbol{V}\|_{\infty}\leq e^{-\lambda au}\|oldsymbol{v}-oldsymbol{V}\|_{\infty}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus v = V.

Remark: the dynamic programming principle entirely characterises the value function!

000000	Ovnamic programming	Ist characterization	Viscosity solutions
Min-plus	linearity		

Notation. Given v_1 and $v_2 \in BUC(\mathbb{R}^n)$, we write $v_1 \leq v_2$ if $v_1(x) \leq v_2(x)$ for all $x \in \mathbb{R}^n$. We define $\min(v_1, v_2) \in BUC(\mathbb{R}^n)$ by

 $\min(v_1, v_2)(x) = \min(v_1(x), v_2(x)), \quad \forall x \in \mathbb{R}^n.$

Given $\alpha \in \mathbb{R}$, we define $v_1 + \alpha$ by $(v_1 + \alpha)(x) = v_1(x) + \alpha$.

Lemma 11

Let v_1 and $v_2 \in BUC(\mathbb{R}^n)$. Let $\alpha \in \mathbb{R}$. The map \mathcal{T} is monotone:

 $v_1 \leq v_2 \Longrightarrow \mathcal{T} v_1 \leq \mathcal{T} v_2$

and min-plus linear:

 $\min(\mathcal{T}v_1, \mathcal{T}v_2) = \mathcal{T}\min(v_1, v_2), \quad \mathcal{T}(v + \alpha) = (\mathcal{T}v) + e^{-\lambda \tau} \alpha.$

A D N A 目 N A E N A E N A B N A C N

Proof: exercise.

0000000 00000000 00000000 0000000000000	Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
				00000000000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- 2 Dynamic programming principle
- 3 A first characterization of the value function
- 4 HJB equation: the classical sense
- 5 HJB equation: viscosity solutions

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 00000000000	Viscosity solutions	
Hamiltonian					

We define the **pre-Hamiltonian** H and the **Hamiltonian** H by

$$H(u, x, p) = \ell(u, x) + \langle p, f(u, x) \rangle,$$

$$H(x, p) = \min_{u \in U} H(u, x, p).$$

Lemma 12

The mapping \mathcal{H} is continuous, concave with respect to p, and Lipschitz continuous with respect to p with modulus $||f||_{\infty}$.

Proof. The pre-Hamiltonian H is affine in p, thus concave in p. As an infimum of concave functions, H is concave. We have:

$$egin{aligned} \mathcal{H}(x, ilde{p}) &- \mathcal{H}(x,p) ert \leq \sup_{u \in U} ert H(u,x, ilde{p}) - H(u,x,p) ert \ &\leq \sup_{u \in U} ert \langle ilde{p} - p, f(u,x)
angle ert \leq ert ilde{p} - p ert \cdot ert f ert_{\infty}. \end{aligned}$$

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 00000000000	Viscosity solutions
Informal	derivation			

Notation: $C^1(\mathbb{R}^n)$, the set of continuously differentiable functions from \mathbb{R}^n to \mathbb{R} .

Lemma 13

Let $\Phi \in C^1(\mathbb{R}^n)$. Let $x \in \mathbb{R}^n$, let $u \in U_\infty$, let y = y[u, x]. Consider the mapping:

$$arphi\colon au\in [0,\infty)\mapsto \int_0^ au e^{-\lambda t}\ell(u(t),y(t))\,dt+e^{-\lambda au}\Phi(y(au))-\Phi(x).$$

Then $\varphi(0) = 0$ and $\varphi \in W^{1,\infty}(0,\infty)$ with

 $\dot{\varphi}(\tau) = e^{-\lambda\tau} \big(H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \big). \quad (*)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In particular: $\dot{\varphi}(0) = H(u(0), x, \nabla \Phi(x)) - \lambda \Phi(x)$ (if *u* is continuous at 0).

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 00000000000	Viscosity solutions
Informal of	derivation			

Proof. To simplify, we only consider the case where u is continuous, so that y is C^1 and φ is $C^1(\mathbb{R}^n)$. We have then:

$$egin{aligned} \dot{arphi}(au) &= e^{-\lambda au}\ell(u(au),y(au)) + e^{-\lambda au}\langle
abla \Phi(y(au)),\dot{y}(au)
angle \ &-\lambda e^{-\lambda au} \Phi(y(au)) \end{aligned}$$

$$egin{aligned} &= e^{-\lambda au}ig[\ell(u(au),y(au)) + \langle
abla \Phi(y(au)),f(u(au),y(au))
angleig] \ &-\lambda e^{-\lambda au} \Phi(y(au)) \end{aligned}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$= e^{-\lambda\tau} \big[H(u(\tau), y(\tau), \nabla \Phi(y(\tau))) - \lambda \Phi(y(\tau)) \big].$$

Introduction 000000 Dynamic programming 00000000

1st characterization

Classical HJB 00000000000 Viscosity solutions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

HJB in the classical sense

Theorem 14

Let $x \in \mathbb{R}^n$. Assume that

■ V is continuously differentiable in a neighborhood of x

• P(x) has a solution \overline{u} which is continuous at time 0.

Then,

$$\lambda V(x) - \mathcal{H}(x, \nabla V(x)) = 0,$$

 $\overline{u}(0) \in \operatorname*{argmin}_{u_0 \in U} H(u_0, x, \nabla V(x)).$

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions	
000000	0000000	000000000000	○0000●000000		
HIR in the classical sense					

Proof. Step 1. Let $u_0 \in U$, let u be the constant control equal to u_0 , let y = y[u, x]. By the **dynamic programming** principle, we have:

$$0 \leq \varphi(\tau) := \int_0^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \, \mathrm{d}t + e^{-\lambda \tau} V(y(\tau)) - V(x),$$

for all au. Since $\varphi(0) = 0$, we deduce from (*) that:

$$0 \leq \dot{\varphi}(0) = H(u_0, x, \nabla V(x)) - \lambda V(x).$$

Therefore,

$$0 \leq H(u_0, x, \nabla V(x)) - \lambda V(x), \quad \forall u_0 \in U.$$

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
HJB in th	e classical sens	e		

Step 2. Let us apply the **dynamic programming principle** again. Redefining φ and setting $\bar{y} = y[\bar{u}, x]$, we obtain:

$$0 = \varphi(\tau) := \int_0^\tau e^{-\lambda t} \ell(\bar{u}(t), \bar{y}(t)) \, \mathrm{d}t + e^{-\lambda \tau} V(\bar{y}(\tau)) - V(x),$$

for all $\tau \ge 0$. It follows that

 $0 = H(\bar{u}(0), x, \nabla V(x)) - \lambda V(x).$

Step 3. It follows that

 $H(\bar{u}(0), x, \nabla V(x)) = \lambda V(x) \le H(u_0, x, \nabla V(x)), \quad \forall u_0 \in U.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Therefore, $H(\bar{u}(0), x, \nabla V(x)) = \mathcal{H}(x, \nabla V(x)).$

Introduction Dynamic programming 1st characterization Classical HJB Viscosity solutions

HJB in the classical sense

Corollary 15

Let $t \ge 0$, assume that \bar{u} is continuous in a neighborhood of t and that V is C^1 in a neighborhood of $\bar{y}(t)$, where $\bar{y} := y[\bar{u}, x]$. Then,

 $\bar{u}(t) \in \operatorname*{argmin}_{u_0 \in U} H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 0000000000000	Viscosity solutions
HIR in t	he classical se	nse		

Remarks.

Let us define the Q-function by $Q(u, y) := H(u, y, \nabla V(y))$, assuming that $V \in C^1(\mathbb{R}^n)$.

If the minimizer is unique in the following relation, we have a feedback law:

$$ar{u}(t) = \mathop{\mathrm{argmin}}_{U} Q(\cdot,ar{y}(t)).$$

- In some cases, one can show that $\nabla V(\bar{y}(t)) = p(t)$, where *p* is defined by some adjoint equation \rightarrow **Pontryagin's principle**.
- In Reinforcement Learning, the approximation of Q is a central objective.

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
			000000000000	

We will call the equation

 $\lambda v(x) - \mathcal{H}(x, \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n$ (HJB)

Hamilton-Jacobi-Bellman equation, with unknown $v : \mathbb{R}^n \to \mathbb{R}$.

Remarks.

- In general V is not differentiable → in which sense is the HJB equation to be understood?
- In Theorem 14, we have shown that

 $\bar{u}(t) \in \operatorname{argmin} H(u_0, y[\bar{u}(t), x], \nabla V(y[\bar{u}(t), x])),$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(under restrictive assumptions). We will see next that this necessary condition is also **sufficient**.

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
			00000000000000	

Theorem 16 (Verification)

Let us assume the assumptions of Theorem 14 hold for all $x \in \mathbb{R}^n$, so that the HJB equation is satisfied in the classical sense. Let $x \in \mathbb{R}^n$. Assume that there exists a control \overline{u} such that

$$\bar{u}(t) \in \operatorname*{argmin}_{u_0 \in U} H(u_0, \bar{y}(t), \nabla V(\bar{y}(t))),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\bar{y} = y[\bar{u}, x]$. Then \bar{u} is globally optimal.

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
			0000000000	

Proof. Consider the function:

$$arphi(au) = \int_0^ au e^{-\lambda t} \ell(ar u(t),ar y(t)) \,\mathrm{d}t + e^{-\lambda au} V(ar y(au)) - V(x).$$

We have $\varphi(0) = 0$. Using (*) and Theorem 14, we obtain:

$$\begin{split} \dot{\varphi}(\tau) &= e^{-\lambda\tau} \big[\mathcal{H}(\bar{u}(\tau),\bar{y}(\tau),\nabla V(\bar{y}(\tau)) - V(\bar{y}(\tau)) \big] \\ &= e^{-\lambda\tau} \big[\mathcal{H}(\bar{y}(\tau),\nabla V(\bar{y}(\tau))) - V(\bar{y}(\tau)) \big] \\ &= 0. \end{split}$$

Thus φ is constant, equal to 0. Its limit is given by:

$$0=\int_0^\infty e^{-\lambda t}\ell(\bar{u}(t),\bar{y}(t))\,\mathrm{d}t-V(x)=W(x,\bar{u})-V(x),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

proving the optimality of \bar{u} .

000000 00000000 000000000 0000000 000000	solutions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1 Introduction

- 2 Dynamic programming principle
- 3 A first characterization of the value function
- 4 HJB equation: the classical sense
- **5** HJB equation: viscosity solutions

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Abstract	PDE			

We consider an abstract PDE of the form:

 $\mathcal{F}(x, v(x), \nabla v(x)) = 0, \quad \forall x \in \mathbb{R}^n,$

where $\mathcal{F} \colon \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ is continuous.

It contains the HJB equation with

 $\mathcal{F}(x, v, p) = \lambda v - \mathcal{H}(x, p).$

Goal of the section: showing that V is a viscosity solution to the HJB equation.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introduction Dynamic programming 1st characterization Classical HJB Viscosity solutions

Sub- and super-differentials

Definition 17

Let $v : \mathbb{R}^n \to \mathbb{R}$. The following sets are called **sub- and** superdifferential, respectively:

$$D^{-}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \liminf_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \ge 0 \right\}$$
$$D^{+}v(x) = \left\{ p \in \mathbb{R}^{n} \mid \limsup_{y \to x} \frac{v(y) - v(x) - \langle p, y - x \rangle}{\|y - x\|} \le 0 \right\}.$$

Exercise. Let v(x) = |x|. Show that $D^{-}v(0) = [-1, 1]$.

・ロト・日本・日本・日本・日本・日本・日本

Sub- and super-differentials

We have the following characterization.

Lemma 18
Let
$$v : \mathbb{R}^n \to \mathbb{R}$$
 be continuous. Let $p \in \mathbb{R}^n$.
 $p \in D^-v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that
 $\nabla \Phi(x) = p$ and $v - \Phi$ has a local minimum in x .
 $p \in D^+v(x) \iff$ there exists $\Phi \in C^1(\mathbb{R}^n)$ such that
 $\nabla \Phi(x) = p$ and $v - \Phi$ has a local maximum in x .

Proof. The implication \implies is admitted. The implication \iff is left as an exercise.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remark. In the above lemma, one can chose $\Phi(x) = v(x)$ without loss of generality. Thus, we have:

- (v − Φ) has a local minimum in x ⇔ v − Φ is nonnegative in a neighborhood of x ⇔ v is locally bounded from below by Φ
- (v − Φ) has a local maximum in x ⇔ v − Φ is nonpositive in a neighborhood of x ⇔ v is locally bounded from above by Φ

Remark. If v is Fréchet differentiable at x, then the sub- and superdifferential are equal to $\{\nabla v(x)\}$.

000000	0000000	00000000000	000000000000	000000000000000000000000000000000000000
Viscosit	/ solutions			

Definition 19

Let $v : \mathbb{R}^n \to \mathbb{R}$. We call v a viscosity subsolution if

 $\mathcal{F}(x, v(x), p) \leq 0, \quad \forall x \in \mathbb{R}^n, \ \forall p \in D^+ v(x)$

or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local maximum in x,

 $\mathcal{F}(x, v(x), \nabla \Phi(x)) \leq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Dynamic programming	1st characterization	Classical HJB	Viscosity solutions
000000	00000000	00000000000	000000000000	
Viscositv	solutions			

Definition 20

Let $v : \mathbb{R}^n \to \mathbb{R}$. We call v a viscosity supersolution if

 $\mathcal{F}(x, v(x), p) \geq 0, \quad \forall p \in D^- v(x)$

or, equivalently, if for all $\Phi \in C^1(\mathbb{R}^n)$ such that $v - \Phi$ has a local minimum in x,

 $\mathcal{F}(x, v(x), \nabla \Phi(x)) \geq 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We call v a viscosity solution if it is a sub- and a supersolution.

000000	0000000	00000000000	000000000000	00000000000000000
Viccosity	/ colutions			

Theorem 21

The value function V is a viscosity solution of the HJB equation.

Step 1: V is a subsolution. Let $x \in \mathbb{R}^n$, let $\Phi \in C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local maximizer in x and $V(x) = \Phi(x)$. We have to prove that

$$\lambda v(x) - \mathcal{H}(x, \nabla \Phi(x)) \leq 0.$$

Let $u_0 \in U$, let u be the constant control equal to u_0 and let y = y[u, x]. By the DPP, we have:

$$V(x) \leq \int_0^{ au} e^{-\lambda t} \ell(u_0, y(t)) \,\mathrm{d}t + e^{-\lambda au} V(y(au)).$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

If τ is sufficiently small, we have $V(y(\tau)) \leq \Phi(y(\tau))$.

Introduction 000000	Dynamic programming	1st characterization 00000000000	Classical HJB 000000000000	Viscosity solutions
Viscosity	solutions			

This implies that for τ sufficiently small,

$$0 \leq \int_0^\tau e^{-\lambda t} \ell(u_0, y(t)) \, \mathrm{d}t + e^{-\lambda \tau} \Phi(y(\tau)) - \Phi(x) =: \varphi(\tau).$$

Since $\varphi(0) = 0$, we deduce with (*) that

$$0 \leq \dot{\varphi}(0) = H(u_0, x, \nabla \Phi(x)) - \lambda V(x).$$

Minimizing with respect to $u_0 \in U$, we obtain:

$$0 \leq \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

as was to be proved.

Step 2: V is supersolution. Let $x \in \mathbb{R}^n$, let $\Phi \in C^1(\mathbb{R}^n)$ be such that $V - \Phi$ has a local minimizer in x and such that $V(x) = \Phi(x)$. We have to prove that

 $\lambda V(x) - \mathcal{H}(x, \nabla \Phi(x)) \leq 0.$

It follows from the dynamic programming principle that for $\tau>0$ small enough

$$\Phi(x) \geq \inf_{u \in \mathcal{U}_{\tau}} \underbrace{\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y[x, u](t)) \, \mathrm{d}t + e^{-\lambda t} \Phi(y[x, u](\tau))}_{=:\varphi[u](\tau)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 000000	Dynamic programming 00000000	1st characterization	Classical HJB 000000000000	Viscosity solutions
Viscosity	solutions			

Thus by Lemma 13,

$$0 \ge \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \dot{\varphi}[u](t) dt$$

= $\inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} e^{-\lambda t} (H(u(t), y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t))) dt)$
$$\ge \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} \underbrace{e^{-\lambda t} (\mathcal{H}(y[u](t), \nabla \Phi(y[u](t)) - \lambda \Phi(y[u](t)))}_{=:\psi[u](t)} dt.$$

We have $\psi[u](0) = \mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x)$, in particular, $\psi[u](0)$ does not depend on u.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000	Dynamic programming	1st characterization	Classical HJB 00000000000	Viscosity solutions
Viscosity	solutions			

Let $\varepsilon > 0$. There exists (exercise!) $\tau > 0$ such that

$$|\psi[u](t) - \psi[u](0)| \leq arepsilon, \quad orall t \in [0, au], \; orall u \in \mathcal{U}_{\infty}.$$

The previous inequality yields

$$0 \ge \inf_{u \in \mathcal{U}_{\infty}} \int_{0}^{\tau} (\psi[u](0) - \varepsilon) dt$$

$$\ge \tau(\mathcal{H}(x, \nabla \Phi(x)) - \lambda V(x) - \varepsilon).$$

Dividing by τ and sending ε to 0, we obtain that

$$\lambda V(x) - \mathcal{H}(x, \nabla \Phi(x)) \leq 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Viscosity	solutions			
Introduction 000000	Dynamic programming 0000000	1st characterization	Classical HJB 000000000000	Viscosity solutions

Theorem 22 (Comparison principle)

Let v_1 be a subsolution to the HJB equation. Let v_2 be a supersolution to the HJB equation. Then

 $v_1(x) \leq v_2(x), \quad \forall x \in \mathbb{R}^n.$

Proof: admitted.

Corollary 23

The value function V is the unique viscosity solution.

Proof. By the comparison principle, any viscosity solution v is such that $v \leq V$ and $v \geq V$.