Optimal Control of Ordinary Differential Equations SOD 311

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris
Paris-Saclay University
November 4, 2021

PARIS-SACLAY

Lecture 4:
 Numerical resolution of the HJB equation

- Goal: constructing a numerical scheme for the resolution of the HJB equation.
- Issues: time and space discretization, iterative schemes for the discretized equation, convergence analysis.

1 Generalities

- Summary
- Guideline

2 Discretization of the DP-operator

- Time-discretization

■ Space-discretization
3 Iterative mechanisms
■ Value iteration

- Policy iteration

4 Error analysis
5 Variants

- Neural networks
- Q-learning

Problem formulation

Data:

■ A parameter $\lambda>0$, a compact subset U of \mathbb{R}^{m}.
■ Two maps $f:(u, y) \in U \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and
$\ell:(u, y) \in U \times \mathbb{R}^{n} \rightarrow \mathbb{R}$, bounded and Lipschitz continuous.
Problem:
■ State equation: for $x \in \mathbb{R}^{n}$ and $u \in \mathcal{U}_{\infty}$, there is a unique solution $y[u, x]$ to the ODE

$$
\dot{y}(t)=f(u(t), y(t)), \quad y(0)=x
$$

- Cost function W, for $u \in \mathcal{U}_{\infty}$ and $x \in \mathbb{R}^{n}$:

$$
W(u, x)=\int_{0}^{\infty} e^{-\lambda t} \ell(u(t), y[u, x](t)) \mathrm{d} t
$$

- Optimal control problem and value function V :

$$
V(x)=\inf _{u \in \mathcal{U}_{\infty}} W(u, x)
$$

Dynamic programming

Given $\tau>0$, the "DP-mapping"

$$
\mathcal{T}: v \in B \cup C\left(\mathbb{R}^{n}\right) \mapsto \mathcal{T} v \in B \cup C\left(\mathbb{R}^{n}\right)
$$

is defined by

$$
\mathcal{T} v(x)=\inf _{u \in \mathcal{U}_{\tau}}\left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t+e^{-\lambda \tau} v(y[u, x](\tau))\right) .
$$

Theorem 1

The DP-mapping is $e^{-\lambda \tau}$-Lipschitz continuous. The value function V is the unique solution to the fixed point equation

$$
\mathcal{T} v=v, \quad v \in B \cup C\left(\mathbb{R}^{n}\right)
$$

HJB equation

We define the pre-Hamiltonian H and the Hamiltonian \mathcal{H} by

$$
\begin{aligned}
H(u, x, p) & =\ell(u, x)+\langle p, f(u, x)\rangle, \\
\mathcal{H}(x, p) & =\min _{u \in U} H(u, x, p) .
\end{aligned}
$$

Theorem 2

The value function is the unique viscosity solution to the HJB equation

$$
\lambda V(x)-\mathcal{H}(x, \nabla V(x))=0
$$

Remark. The HJB equation can be heuristically derived by calculating a first-order Taylor expansion (with respect to τ) of the DP-mapping.

Towards numerics

■ Purpose: computing a numerical approximation of V.
■ Yields a feedback.

- Can be used to decouple (in time) the optimal control problem.
- A bad idea: discretizing the HJB equation by "brute force", e.g. in dimension 1 :

$$
\lambda V(x)-\mathcal{H}\left(x, \frac{V(x+\delta x)-V(x)}{\delta x}\right)=0
$$

This is doomed to failure!

- Key idea:
- discretize the DP-mapping: $\mathcal{T} \rightsquigarrow \mathcal{T}_{\tau, h}$ in time and space,
- solve the fixed point equation: $v=\mathcal{T}_{\tau, h} v$.

1 Generalities

- Summary
- Guideline

2 Discretization of the DP-operator

- Time-discretization

■ Space-discretization
3 Iterative mechanisms

- Value iteration
- Policy iteration

4 Error analysis
5 Variants
■ Neural networks

- Q-learning

Time-discretization

Recall the definition of \mathcal{T} :

$$
\mathcal{T} v(x)=\inf _{u \in \mathcal{U}_{\tau}}\left(\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t+e^{-\lambda \tau} v(y[u, x](\tau))\right)
$$

Ingredients for the time-discretization, assuming τ small:

$$
\begin{aligned}
\mathcal{U}_{\tau} & \rightsquigarrow \text { a constant control on }(0, \tau) \\
\int_{0}^{\tau} e^{-\lambda t} \ell(u(t), y(t)) \mathrm{d} t & \rightsquigarrow \tau \ell(u, x) \\
e^{-\lambda \tau} v(y[u, x](\tau)) & \rightsquigarrow(1-\lambda \tau) v(y[u, x](\tau)) .
\end{aligned}
$$

Remarks:

- at the moment we do note try to simplify $y[u, x](\tau)$
- calculations similar to those for $\dot{\varphi}$.

Time-discretization

We fix now $\tau>0$ such that $1-\lambda \tau>0$ (i.e. $\tau<1 / \lambda$) and define:

$$
\mathcal{T}_{\tau} v(x)=\min _{u \in U}(\tau \ell(u, x)+(1-\lambda \tau) v(y[u, x](\tau))) .
$$

Remark: notation $y[u, x]$ extended to $u \in U$.

Lemma 3

The map \mathcal{T}_{τ} is well-defined from $B \cup C\left(\mathbb{R}^{n}\right)$ to $B \cup C\left(\mathbb{R}^{n}\right)$. It is Lipschitz with modulus $(1-\lambda \tau)$ for the supremum norm.

Proof. Exercise (adapt ideas from the previous lecture).

Corollary 4

There exists a unique $V_{\tau} \in B \cup C\left(\mathbb{R}^{n}\right)$ such that $V_{\tau}=\mathcal{T}_{\tau} V_{\tau}$.

Time-discretization

Idea: we give an interpretation of V_{τ} as value function of a discretized optimal control problem.

Notation: $U^{\mathbb{N}}$ is the set of sequences $u=\left(u_{k}\right)_{k \in \mathbb{N}}$ such that $u_{k} \in U, \forall k \in \mathbb{N}$.

Control set and state equation: given $u \in U^{\mathbb{N}}$, define $y_{\tau}[u, x]=y[\mathrm{u}, x]$, where $\mathrm{u} \in \mathcal{U}_{\infty}$ is defined by

$$
\mathrm{u}(t)=u_{k}, \quad \text { for a.e. } t \in(k \tau,(k+1) \tau)
$$

Cost: $W_{\tau}(u, x)=\tau \sum_{k=0}^{\infty}(1-\lambda \tau)^{k} \ell\left(u_{k}, y_{\tau}[u, x](k \tau)\right)$.
Remark. We have "sampled" \mathcal{U}_{∞} and discretized $W(x, u)$.

Time-discretization

Theorem 5

Let us consider, for $x \in \mathbb{R}^{n}$, the optimal control problem

$$
\begin{equation*}
\hat{V}_{\tau}(x)=\inf _{u \in U^{\mathbb{N}}} W_{\tau}(u, x) \tag{x}
\end{equation*}
$$

It holds: $V_{\tau}(x)=\hat{V}_{\tau}(x)$.

Proof. It suffices to verify that

$$
\hat{V}_{\tau}=\mathcal{T}_{\tau} \hat{V}_{\tau}
$$

i.e. to verify that \hat{V}_{τ} satisfies an appropriate dynamic programming principle.

Time-discretization

The flow property yields:

$$
y_{\tau}[u, x](k \tau)=y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right]((k-1) \tau),
$$

where $\tilde{u} \in U^{\mathbb{N}}$ is defined by $\tilde{u}_{k}=u_{k+1}$. We have:

$$
\begin{aligned}
W_{\tau}(u, x)= & \tau \ell\left(u_{0}, x\right)+\tau \sum_{k=1}^{\infty}(1-\lambda \tau)^{k} \ell\left(u_{k}, y_{\tau}[u, x](k \tau)\right) \\
= & \tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) . \\
& \underbrace{\tau \sum_{k=1}^{\infty}(1-\lambda \tau)^{k-1} \ell\left(\tilde{u}_{k-1}, y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right]((k-1) \tau)\right)} .
\end{aligned}
$$

Time-discretization

The flow property yields:

$$
y_{\tau}[u, x](k \tau)=y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right]((k-1) \tau),
$$

where $\tilde{u} \in U^{\mathbb{N}}$ is defined by $\tilde{u}_{k}=u_{k+1}$. We have:

$$
\begin{aligned}
W_{\tau}(u, x)= & \tau \ell\left(u_{0}, x\right)+\tau \sum_{k=1}^{\infty}(1-\lambda \tau)^{k} \ell\left(u_{k}, y_{\tau}[u, x](k \tau)\right) \\
= & \tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) . \\
& \underbrace{\tau \sum_{k=1}^{\infty}(1-\lambda \tau)^{k-1} \ell\left(\tilde{u}_{k-1}, y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right]((k-1) \tau)\right)} .
\end{aligned}
$$

Time-discretization

The flow property yields:

$$
y_{\tau}[u, x](k \tau)=y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right]((k-1) \tau),
$$

where $\tilde{u} \in U^{\mathbb{N}}$ is defined by $\tilde{u}_{k}=u_{k+1}$. We have:

$$
\begin{aligned}
& W_{\tau}(u, x)= \tau \ell\left(u_{0}, x\right)+\tau \sum_{k=1}^{\infty}(1-\lambda \tau)^{k} \ell\left(u_{k}, y_{\tau}[u, x](k \tau)\right) \\
&= \tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) . \\
& \underbrace{\tau \sum_{k=0}^{\infty}(1-\lambda \tau)^{k} \ell\left(\tilde{u}_{k}, y_{\tau}\left[\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right](k \tau)\right)}_{=W_{\tau}\left(\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right)} .
\end{aligned}
$$

Time-discretization

We obtain:

$$
W_{\tau}(u, x)=\tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) W_{\tau}\left(\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right) .
$$

Proceeding as in the previous lecture, we arrive at:

$$
\begin{aligned}
\hat{V}_{\tau}(x) & =\inf _{u \in U^{\mathbb{N}}} W_{\tau}(u, x) \\
& =\inf _{u_{0} \in U}\left(\tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) \inf _{\tilde{u} \in \mathbb{U}^{N}} W_{\tau}\left(\tilde{u}, y_{\tau}\left[u_{0}, x\right](\tau)\right)\right) \\
& =\inf _{u_{0} \in U}\left(\tau \ell\left(u_{0}, x\right)+(1-\lambda \tau) \hat{V}_{\tau}\left(y_{\tau}\left[u_{0}, x\right](\tau)\right)\right) \\
& =\mathcal{T}_{\tau} \hat{V}_{\tau}(x) .
\end{aligned}
$$

Time-discretization

The analysis can be summarized with a commutative diagram:

Time-discretization

The analysis can be summarized with a commutative diagram:

Time-discretization

The analysis can be summarized with a commutative diagram:

The "discretization" and "dynamic programming" phases commute.

Space-discretization

We need to further simplify the operator \mathcal{T}_{τ}.
Difficulties and solutions:
1 Impossible to manipulate (numerically) a function on \mathbb{R}^{n}.

2 Evaluation of $y_{\tau}[u, x](\tau)$?

Space-discretization

We need to further simplify the operator \mathcal{T}_{τ}.
Difficulties and solutions:
1 Impossible to manipulate (numerically) a function on \mathbb{R}^{n}.

- Store $v(x)$ for finitely many points x.
- Value of v is needed at an arbitrary $x \rightarrow$ interpolation.

2 Evaluation of $y_{\tau}[u, x](\tau)$?

Space-discretization

We need to further simplify the operator \mathcal{T}_{τ}.
Difficulties and solutions:
1 Impossible to manipulate (numerically) a function on \mathbb{R}^{n}.

- Store $v(x)$ for finitely many points x.
- Value of v is needed at an arbitrary $x \rightarrow$ interpolation.

2 Evaluation of $y_{\tau}[u, x](\tau)$?
■ Explicit Euler scheme: $y_{\tau}[u, x](\tau)=x+\tau f(u, x)$.

- Many other possible schemes.

Space-discretization

Interpolation.
Let \mathcal{G} be a countable subset of \mathbb{R}^{n}, called grid. We assume that there exists an interpolation map

$$
\mu: \mathcal{G} \times \mathbb{R}^{n} \rightarrow[0,1]
$$

such that for all $x \in \mathbb{R}^{n}$,

$$
x=\sum_{y \in \mathcal{G}} \mu(y, x) y, \quad \sum_{y \in \mathcal{G}} \mu(y, x)=1
$$

In words: each x is a convex combination of some points y of the grid, with weights $\mu(y, x)$.

Space-discretization

Notation: $L^{\infty}(\mathcal{G})$ is the space of bounded functions from \mathcal{G} to \mathbb{R}.
Given $v \in L^{\infty}(\mathcal{G})$, let the interpolation $[v] \in L^{\infty}\left(\mathbb{R}^{n}\right)$ be defined by

$$
[v](x)=\sum_{y \in \mathcal{G}} v(y) \mu(y, x)
$$

In words: $[v](x)$ is the convex combination of the reals $v(y)$, for the weights $\mu(y, x)$.

Space-discretization

Example of grid and interpolation map.
A natural choice is $\mathcal{G}=\mathbb{Z}^{n}$. Let us construct a suitable μ_{n}.
Case $n=1$. Let $x \in \mathbb{R}$, let $k \in \mathbb{Z}$ be such that $k \leq x<k+1$. Then,

$$
x=(k+1-x) k+(x-k)(k+1) .
$$

Thus we can define:

$$
\mu_{1}(y, x)=\left\{\begin{array}{cl}
(k+1-x) & \text { if } y=k \\
(x-k) & \text { if } y=k+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Obviously, $\mu_{1}(y, x) \in[0,1]$ and $\sum_{y \in \mathbb{Z}} \mu_{1}(y, x)=1$.

Space-discretization

Figure: Interpolation in dimension 1

Space discretization

General case $n>1$. Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.
Let $y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{Z}^{n}$. Let us define $\mu_{n}(y, x)$ by

$$
\mu_{n}(y, x)=\prod_{k=1}^{n} \mu_{1}\left(y_{k}, x_{k}\right) \in[0,1]
$$

Then we have

$$
\begin{aligned}
\sum_{y \in \mathbb{Z}^{n}} \mu_{n}(y, x) & =\sum_{y \in \mathbb{Z}^{n}}\left(\prod_{k=1}^{n} \mu_{1}\left(y_{k}, x_{k}\right)\right) \\
& =\prod_{k=1}^{n}(\underbrace{\sum_{y_{k} \in \mathbb{Z}} \mu_{1}\left(y_{k}, x_{k}\right)}_{=1})=1
\end{aligned}
$$

Space discretization

Moreover,

$$
\begin{aligned}
& \sum_{y \in \mathbb{Z}^{n}} \mu_{n}(y, x) y=\sum_{y \in \mathbb{Z}^{n}}\left(\prod_{k=1}^{n} \mu_{1}\left(y_{k}, x_{k}\right)\left(y_{1}, \ldots, y_{n}\right)\right) \\
& \quad=\sum_{y_{1} \in \mathbb{Z}} \ldots \sum_{y_{n} \in \mathbb{Z}}\left(\mu_{1}\left(y_{1}, x_{1}\right) y_{1}, \mu_{2}\left(y_{2}, x_{2}\right) y_{2}, \ldots, \mu_{k}\left(y_{k}, x_{k}\right) y_{k}\right) \\
& =\left(\sum_{y_{1} \in \mathbb{Z}} \mu_{1}\left(y_{1}, x_{1}\right) y_{1}, \sum_{y_{2} \in \mathbb{Z}} \mu_{2}\left(y_{2}, x_{2}\right) y_{2}, \ldots, \sum_{y_{n} \in \mathbb{Z}} \mu_{n}\left(y_{n}, x_{n}\right) y_{n}\right) \\
& \quad=\left(x_{1}, \ldots, x_{n}\right)=x .
\end{aligned}
$$

Space discretization

Some remarks.
■ Many other possibilities for a grid and for the associated interpolation function. In general, given $x \in \mathbb{R}^{n}$, the set

$$
\{y \in \mathcal{G} \mid \mu(y, x)>0\}
$$

should be (ideally) of small cardinality and should contain points close to x.

- For the grid \mathbb{Z}^{n} and the proposed interpolation function μ_{n}, the evaluation of

$$
[v](x)=\sum_{y \in \mathbb{Z}^{n}} \mu_{n}(y, x) v(y)
$$

requires 2^{n} operations.

Space discretization

For the grid

$$
\mathcal{G}_{n, h}:=h \mathbb{Z}^{n},
$$

one can simply define

$$
\mu_{n, h}(y, x)=\mu_{n}(y / h, x / h)
$$

We have, using the change of variable $y=h y^{\prime}$,

$$
\frac{x}{h}=\sum_{y^{\prime} \in \mathbb{Z}^{n}} \mu_{n}\left(y^{\prime}, x / h\right) y^{\prime}=\sum_{y \in \mathcal{G}_{n, h}} \underbrace{\mu_{n}(y / h, x / h)}_{=\mu_{n, h}(y, x)} \frac{y}{h}
$$

Multiplying by h, we get

$$
x=\sum_{y \in \mathcal{G}_{n, h}} \mu_{n, h}(y, x) y .
$$

Space discretization

Back to the DP-mapping. We replace the term $v\left(y_{\tau}[u, x](\tau)\right)$ by the interpolation

$$
[v](x+\tau f(u, x))=\sum_{y \in \mathcal{G}} \mu(y, x+\tau f(u, x)) v(y)
$$

The transition mapping p is defined by $p(y \mid u, x)=\mu(y, x+\tau f(u, x))$. Note that

$$
p(y \mid u, x) \in[0,1], \quad \sum_{y \in \mathcal{G}} p(y \mid u, x)=1
$$

Thus $p(y \mid u, x)$ can be interpreted as a probability transition from x to y, under the control u.

Space discretization

For $v \in L^{\infty}(\mathcal{G})$, the discrete DP-mapping is defined by

$$
\begin{aligned}
\mathcal{T}_{\tau, h} v(x) & =\inf _{u \in U}(\tau \ell(u, x)+(1-\lambda \tau)[v](x+\tau f(u, x))) \\
& =\inf _{u \in U}\left(\tau \ell(u, x)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p(y \mid u, x) v(y)\right) .
\end{aligned}
$$

It is still well-defined and Lipschitz with modulus $(1-\lambda \tau)$, for the uniform norm.

Remarks.
■ From now on: we only use $p(y \mid u, x)$, which contains both the interpolation map and the discretization of the ODE.

- The index $h>0$ will be used to describe the quality of the space discretization.

Space-discretization

Further remarks.
■ We still need to manipulate elements of $L^{\infty}(\mathcal{G})$, impossible since \mathcal{G} is infinite. Further domain restriction to be applied, we do not discuss this aspect.

■ The practical computation of the infimum in $\mathcal{T}_{\tau, h}$ may be difficult. Typically, $p(y \mid u, x)$ is non-differentiable. Extreme solution: discretization of U, minimization by enumeration.

- Curse of dimensionality.

$$
\operatorname{card}\left(B(0, R) \cap h \mathbb{Z}^{n}\right)=\mathcal{O}\left(\left(\frac{R}{h}\right)^{n}\right)
$$

\rightarrow Exponential complexity with respect to the dimension n.

Space discretization

Interpretation of the fixed point equation:

$$
V_{\tau, h}=\mathcal{T}_{\tau, h} V_{\tau, h}, \quad V_{\tau, h} \in L^{\infty}(\mathcal{G})
$$

Notation: $L^{\infty}(\mathbb{N} \times \mathcal{G} ; U)$ is the set of functions from $\mathbb{N} \times \mathcal{G}$ to U. Given $u \in L^{\infty}(\mathbb{N} \times \mathcal{G} ; U)$, let $Y[u, x]$ denote the Markov chain defined by

$$
\begin{aligned}
& \mathbb{P}\left[Y[u, x](k+1)=y^{\prime} \mid Y[u, x](k)=y\right]=p\left(y^{\prime} \mid u(k, y), y\right) \\
& Y[u, x](0)=x
\end{aligned}
$$

In words:
■ At time k, if the Markov chain is equal to y, the control $u(k, y)$ is employed.

- The probability to move to y^{\prime} is given by $p\left(y^{\prime} \mid u(k, y), y\right)$.

Space-discretization

Cost function:

$$
W_{\tau, h}(u, x)=\mathbb{E}\left[\tau \sum_{k=0}^{\infty}(1-\lambda \tau)^{k} \ell(u(k, Y(k)), Y(k))\right]
$$

where $Y=Y[u, x]$.

Lemma 6

The unique solution $V_{\tau, h}$ to the fixed-point equation

$$
V_{\tau, h}=\mathcal{T}_{\tau, h} V_{\tau, h}
$$

is the value function of the following problem:

$$
V_{\tau, h}(x)=\inf _{u \in L^{\infty}(\mathbb{N} \times \mathcal{G} ; U)} W_{\tau, h}(u, x)
$$

The analysis can be (again!) summarized with a commutative diagram:

The "discretization" and "dynamic programming" phases commute.

1 Generalities

- Summary
- Guideline

2 Discretization of the DP-operator

- Time-discretization
- Space-discretization

3 Iterative mechanisms
■ Value iteration
■ Policy iteration
4 Error analysis
5 Variants
■ Neural networks

- Q-learning

Value iteration

Value iteration algorithm.
■ Input: $v_{0}: \mathcal{G} \rightarrow \mathbb{R}$.
■ For $k=0,1, \ldots, K$, do

$$
v_{k+1}=\mathcal{T}_{\tau, h} v_{k}
$$

■ Output: v_{K}.

Lemma 7

The sequence $\left(v_{k}\right)_{k=0,1, \ldots}$ converges linearly to $V_{\tau, h}$ for the supremum norm. More precisely:

$$
\left\|v_{k}-V_{\tau, h}\right\|_{L \infty(\mathcal{G})} \leq(1-\lambda \tau)^{k}\left\|v_{0}-V_{\tau, h}\right\| .
$$

Proof: by induction. Recall that $\mathcal{T}_{\tau, h}$ is $(1-\lambda \tau)$-Lipschitz.

Policy iteration

Definition 8

Let $L^{\infty}(\mathcal{G}, U)$ denote the set of mappings from \mathcal{G} to U. We call any element $u \in L^{\infty}(\mathcal{G}, U)$ a policy.

Key idea. Split the fixed equation $v=\mathcal{T}_{\tau, h} v$ into a coupled system of equations:

$$
\left\{\begin{array}{l}
v(x)=\tau \ell(u(x), x)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p(y \mid u(x), x) v(x) \tag{i}\\
u(x) \in \underset{\alpha \in U}{\operatorname{argmin}} \tau \ell(\alpha, x)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p(y \mid \alpha, x) v(x)
\end{array}\right.
$$

involving $v \in L^{\infty}(\mathcal{G})$ and $u \in L^{\infty}(\mathcal{G}, U)$.

Policy iteration

Remarks.

- For a given policy $u \in L^{\infty}(\mathcal{G}, U)$, equation (i) is a linear fixed-point equation with respect to v. It can be written in the abstract form

$$
v=\mathcal{T}_{\tau, h}^{u} v
$$

where $\mathcal{T}_{\tau, h}: L^{\infty}(\mathcal{G}) \rightarrow L^{\infty}(\mathcal{G})$ is $(1-\lambda \tau)$-Lipschitz-continuous for the supremum norm.

■ For a given $v \in L^{\infty}(\mathcal{G})$, there exists a policy $u \in L^{\infty}(\mathcal{G}, U)$ satisfying (ii).

Policy iteration

Policy iteration method.
■ Input: $u_{0} \in L^{\infty}(\mathcal{G}, U)$.
■ For $k=0,1, \ldots K$, do

- Solve $v_{k+1}=\mathcal{T}_{\tau, h}^{u_{k}} v_{k+1}$.
- Update the policy: find u_{k+1} such that for all $x \in \mathcal{G}$,

$$
u_{k+1}(x) \in \underset{\alpha \in U}{\operatorname{argmin}}\left(\tau \ell(\alpha, x)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p(y \mid \alpha, x) v_{k+1}(x)\right) .
$$

■ Output: v_{K} and u_{K}.

1 Generalities

■ Summary

- Guideline

2 Discretization of the DP-operator

- Time-discretization
- Space-discretization

3 Iterative mechanisms

- Value iteration
- Policy iteration

4 Error analysis
5 Variants

- Neural networks
- Q-learning

Goal

Context. Let $V_{\tau, h}$ denote the solution to the fixed point equation

$$
V_{\tau, h}=\mathcal{T}_{\tau, h} V_{\tau, h}
$$

where

$$
\mathcal{T}_{\tau, h} v(x)=\inf _{u \in U}\left(\tau \ell(u, x)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p(y \mid u, x) v(y)\right)
$$

A specific transition mapping $p: \mathcal{G} \times U \times \mathbb{R}^{n} \rightarrow[0,1]$ has been previously constructed, we consider now a general mapping.

Goal of the section: to compare $V_{\tau, h}$ with the value function of the original problem V.

Assumptions

Assumptions: there exists $C>0$ such that $\forall x \in \mathbb{R}^{n}, \forall u \in U$,

$$
\begin{align*}
& \sum_{y \in \mathcal{G}} p(y \mid u, x)=1, \tag{A1}\\
& \left\|\sum_{y \in \mathcal{G}} p(y \mid u, x) y-(x+f(u, x) \tau)\right\| \leq C \tau^{2} \tag{A2}\\
& \sum_{y \in \mathcal{G}} p(y \mid u, x)\|y-(x+f(u, x) \tau)\|^{2} \leq C h^{2} . \tag{A3}
\end{align*}
$$

Interpretation:

- Assumption (A2) says that

$$
\sum_{y \in \mathcal{G}} p(y \mid u, x) y \approx x+f(u, x) \tau
$$

- Assumption (A3) says that in this approximation formula, grid points close to $x+f(u, x) \tau$ should be employed...
■ ...it is also a bound on the "randomness" of the Markov chain.

Theorem 9

Assume that V is Lipschitz continuous and that assumptions (A1)-(A3) hold true. Then, there exists a constant $C^{\prime}>0$, independent of (τ, h, \mathcal{G}), depending on C, such that

$$
\left|V_{\tau, h}(x)-V(x)\right| \leq C^{\prime}\left(\frac{h^{2}}{\tau^{3 / 2}}+\tau^{1 / 2}\right)
$$

Remarks.
■ Lipschitz continuity is guaranteed if $\lambda>L_{f}$. Extensions of the theorem do exist when V is only Hölderian.
■ Appropriate to choose $\tau=h$, bound: $2 C^{\prime} h^{1 / 2}$.
■ In the proof, we make use of a constant C whose value can be updated from line to line. It is independent of τ, h, and ε (to appear later).

Proof

Proof. Step 1: decoupling of the variables. Our goal is to find an upper bound of

$$
\delta:=\sup _{x \in \mathcal{G}}\left(V_{\tau, h}(x)-V(x)\right)
$$

and a lower bound of

$$
\delta^{\prime}:=\inf _{x \in \mathcal{G}}\left(V_{\tau, h}(x)-V(x)\right) .
$$

In this proof, we will only explain how to bound (from above) δ.

Proof

The key idea is to start with:

$$
\begin{aligned}
\delta & =\sup _{x \in \mathcal{G}}\left(V_{\tau, h}(x)-V(x)\right) \\
& \leq \sup _{\substack{x \in \mathcal{G} \\
y \in \mathbb{R}^{n}}} \Psi_{\varepsilon}(x, y):=\left(V_{\tau, h}(x)-V(y)-\frac{\|x-y\|^{2}}{\varepsilon}\right),
\end{aligned}
$$

where $\varepsilon \in(0,1]$ is arbitrary.

- Proof of the inequality: take $x=y$.

■ Small deterioration since for $\varepsilon>0$ very small, the optimal x and y are close to each other.

Proof

Simplifying assumption: there exists a pair $\left(x_{0}, y_{0}\right) \in \mathcal{G} \times \mathbb{R}^{n}$, depending on ε, which maximizes ψ_{ε}.
[If this was not the case, an arbitrarily small modification of Ψ_{ε} could be done, so that the assumption holds true; we do not detail this aspect.]

We have:

$$
\delta \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right)-\frac{\left\|y_{0}-x_{0}\right\|^{2}}{\varepsilon} \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right) .
$$

We look for an upper bound of $V_{\tau, h}\left(x_{0}\right)$ and a lower bound of $V\left(y_{0}\right)$.

Proof

Step 2: estimate of $\left\|y_{0}-x_{0}\right\|$. The inequality

$$
\Psi_{\varepsilon}\left(x_{0}, x_{0}\right) \leq \Psi_{\varepsilon}\left(x_{0}, y_{0}\right),
$$

yields

$$
V_{\tau, h}\left(x_{0}\right)-V\left(x_{0}\right)-\frac{\left\|x_{0}-x_{0}\right\|^{2}}{\varepsilon} \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right)-\frac{\left\|y_{0}-x_{0}\right\|^{2}}{\varepsilon}
$$

Proof

Step 2: estimate of $\left\|y_{0}-x_{0}\right\|$. The inequality

$$
\Psi_{\varepsilon}\left(x_{0}, x_{0}\right) \leq \Psi_{\varepsilon}\left(x_{0}, y_{0}\right),
$$

yields

$$
-V\left(x_{0}\right) \leq-V\left(y_{0}\right)-\frac{\left\|y_{0}-x_{0}\right\|^{2}}{\varepsilon}
$$

Re-arranging:

$$
\left\|y_{0}-x_{0}\right\|^{2} \leq \varepsilon\left(V\left(x_{0}\right)-V\left(y_{0}\right)\right) \leq C \varepsilon\left\|y_{0}-x_{0}\right\|
$$

since V is Lipschitz. Thus,

$$
\left\|y_{0}-x_{0}\right\| \leq C \varepsilon .
$$

Proof

Step 3: lower bound of $V\left(y_{0}\right)$.
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
\Phi(y)=-\frac{\left\|y-x_{0}\right\|^{2}}{\varepsilon} .
$$

Since y_{0} maximizes $\Psi_{\varepsilon}\left(x_{0}, \cdot\right)$, we have for any $y \in \mathbb{R}^{n}$:

$$
\Psi_{\varepsilon}\left(x_{0}, y\right) \leq \Psi_{\varepsilon}\left(x_{0}, y_{0}\right)
$$

Step 3: lower bound of $V\left(y_{0}\right)$.
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
\Phi(y)=-\frac{\left\|y-x_{0}\right\|^{2}}{\varepsilon} .
$$

Since y_{0} maximizes $\Psi_{\varepsilon}\left(x_{0}, \cdot\right)$, we have for any $y \in \mathbb{R}^{n}$:

$$
V_{\tau, h}\left(x_{0}\right)-V(y)-\frac{\left\|x_{0}-y\right\|^{2}}{\varepsilon} \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right)-\frac{\left\|x_{0}-y_{0}\right\|^{2}}{\varepsilon}
$$

Step 3: lower bound of $V\left(y_{0}\right)$.
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
\Phi(y)=-\frac{\left\|y-x_{0}\right\|^{2}}{\varepsilon} .
$$

Since y_{0} maximizes $\Psi_{\varepsilon}\left(x_{0}, \cdot\right)$, we have for any $y \in \mathbb{R}^{n}$:

$$
-V(y)+\Phi(y) \leq-V\left(y_{0}\right)+\Phi\left(y_{0}\right)
$$

Proof

Step 3: lower bound of $V\left(y_{0}\right)$.
Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
\Phi(y)=-\frac{\left\|y-x_{0}\right\|^{2}}{\varepsilon} .
$$

Since y_{0} maximizes $\Psi_{\varepsilon}\left(x_{0}, \cdot\right)$, we have for any $y \in \mathbb{R}^{n}$:

$$
V(y)-\Phi(y) \geq V\left(y_{0}\right)-\Phi\left(y_{0}\right)
$$

Thus $V-\Phi$ has a global minimizer in y_{0}.

Proof

Let us set

$$
p_{0}=\nabla \Phi\left(y_{0}\right)=\frac{2\left(x_{0}-y_{0}\right)}{\varepsilon} .
$$

Since V is a supersolution of the HJB equation, we have

$$
\lambda V\left(y_{0}\right)-\mathcal{H}\left(y_{0}, p_{0}\right) \geq 0
$$

Denote by $u_{0} \in U$ the control minimizing the pre-Hamiltonian in $H\left(\cdot, y_{0}, p_{0}\right)$, we have:

$$
\begin{equation*}
\lambda V\left(y_{0}\right) \geq \mathcal{H}\left(y_{0}, p_{0}\right)=\ell\left(u_{0}, y_{0}\right)+\left\langle p_{0}, f\left(u_{0}, y_{0}\right)\right\rangle \tag{1}
\end{equation*}
$$

Proof

Step 4: upper bound for $V_{\tau, h}\left(x_{0}\right)$. We use the dynamic programming principle. We have:

$$
\begin{equation*}
V_{\tau, h}\left(x_{0}\right) \leq \tau \ell\left(u_{0}, x_{0}\right)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right) V_{\tau, h}(y) . \tag{2}
\end{equation*}
$$

We next bound $V_{\tau, h}(y)$. We have: $\Psi_{\varepsilon}\left(y, y_{0}\right) \leq \Psi_{\varepsilon}\left(x_{0}, y_{0}\right)$, which yields

$$
V_{\tau, h}(y)-V\left(y_{0}\right)-\frac{\left\|y-y_{0}\right\|^{2}}{\varepsilon} \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right)-\frac{\left\|x_{0}-y_{0}\right\|^{2}}{\varepsilon}
$$

Proof

Step 4: upper bound for $V_{\tau, h}\left(x_{0}\right)$. We use the dynamic programming principle. We have:

$$
\begin{equation*}
V_{\tau, h}\left(x_{0}\right) \leq \tau \ell\left(u_{0}, x_{0}\right)+(1-\lambda \tau) \sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right) V_{\tau, h}(y) . \tag{2}
\end{equation*}
$$

We next bound $V_{\tau, h}(y)$. We have: $\Psi_{\varepsilon}\left(y, y_{0}\right) \leq \Psi_{\varepsilon}\left(x_{0}, y_{0}\right)$, which yields

$$
\begin{equation*}
V_{\tau, h}(y) \leq V_{\tau, h}\left(x_{0}\right)+\frac{\left\|y-y_{0}\right\|^{2}-\left\|x_{0}-y_{0}\right\|^{2}}{\varepsilon} \tag{3}
\end{equation*}
$$

We next re-arrange the term $\left\|y-y_{0}\right\|^{2}-\left\|x_{0}-y_{0}\right\|^{2}$.

Proof

We have:

$$
\begin{align*}
\left\|y-y_{0}\right\|^{2}-\left\|x_{0}-y_{0}\right\|^{2}= & 2\left\langle y-x_{0}, x_{0}-y_{0}\right\rangle+\left\|y-x_{0}\right\|^{2} \\
=2\langle y & \left.-\left(x_{0}+f\left(u_{0}, x_{0}\right) \tau\right), x_{0}-y_{0}\right\rangle \\
& +2\left\langle f\left(u_{0}, x_{0}\right) \tau, x_{0}-y_{0}\right\rangle \\
& +\left\|y-x_{0}\right\|^{2} . \tag{4}
\end{align*}
$$

Injecting (4) in (3) and then (3) in (2), we get:

$$
\begin{equation*}
V_{\tau, h}\left(x_{0}\right) \leq \ell\left(u_{0}, x_{0}\right) \tau+(1-\lambda \tau)\left(V_{\tau, h}\left(x_{0}\right)+a_{1}+a_{2}+a_{3}\right), \tag{5}
\end{equation*}
$$

where the three terms a_{1}, a_{2}, and a_{3} are defined and bounded right after.

Proof

Estimate of $\left(a_{1}\right)$. We have

$$
\begin{aligned}
\left(a_{1}\right) & =\frac{2}{\varepsilon} \sum_{y \in \mathcal{G}}\left(p\left(y \mid u_{0}, x_{0}\right)\left\langle y-\left(x_{0}+f\left(u_{0}, x_{0}\right) \tau\right), x_{0}-y_{0}\right\rangle\right) \\
& \leq \frac{2}{\varepsilon}\left\langle\left(\sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right) y\right)-\left(x_{0}+f\left(u_{0}, x_{0}\right) \tau\right), x_{0}-y_{0}\right\rangle \\
& \leq \frac{2}{\varepsilon}\left\|\left(\sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right) y\right)-\left(x_{0}+f\left(u_{0}, x_{0}\right) \tau\right)\right\| \cdot\left\|x_{0}-y_{0}\right\| \\
& \leq \frac{2}{\varepsilon}\left(C \tau^{2}\right)(C \varepsilon) \\
& =C \tau^{2}
\end{aligned}
$$

by Assumption (A2).

Estimate of (a_{2}). We have

$$
\begin{aligned}
\left(a_{2}\right) & =\frac{2}{\varepsilon} \sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right)\left\langle f\left(u_{0}, x_{0}\right) \tau, x_{0}-y_{0}\right\rangle \\
& =\frac{2}{\varepsilon}\left\langle f\left(u_{0}, x_{0}\right), x_{0}-y_{0}\right\rangle \tau \\
& =\left\langle f\left(u_{0}, x_{0}\right), p_{0}\right\rangle \tau .
\end{aligned}
$$

Proof

Estimate of (a_{3}). We have

$$
\begin{aligned}
\left(a_{3}\right) & =\frac{1}{\varepsilon} \sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right)\left\|y-x_{0}\right\|^{2} \\
& \leq \frac{2}{\varepsilon} \sum_{y \in \mathcal{G}} p\left(y \mid u_{0}, x_{0}\right)\left(\left\|y-\left(x_{0}+f\left(u_{0}, x_{0}\right) \tau\right)\right\|^{2}+\left\|f\left(u_{0}, y_{0}\right) \tau\right\|^{2}\right) \\
& \leq C \frac{h^{2}+\tau^{2}}{\varepsilon},
\end{aligned}
$$

by Assumption (A3).

Proof

Let us combine (5) with the three obtained bouds:

$$
\begin{aligned}
V_{\tau, h}\left(x_{0}\right) \leq \ell(& \left.u_{0}, x_{0}\right) \tau+(1-\lambda \tau) V_{\tau, h}\left(x_{0}\right) \\
& +(1-\lambda \tau)\left\langle f\left(u_{0}, x_{0}\right), p_{0}\right\rangle \tau \\
& +(1-\lambda \tau) C \tau^{2} \\
& +(1-\lambda \tau) C\left(\frac{h^{2}+\tau^{2}}{\varepsilon}\right) .
\end{aligned}
$$

Proof

Let us combine (5) with the three obtained bouds:

$$
\begin{aligned}
V_{\tau, h}\left(x_{0}\right) \leq \ell(& \left.u_{0}, x_{0}\right) \tau+(1-\lambda \tau) V_{\tau, h}\left(x_{0}\right) \\
& +\left\langle f\left(u_{0}, x_{0}\right), p_{0}\right\rangle \tau \\
& +C \tau^{2} \\
& +C\left(\frac{h^{2}+\tau^{2}}{\varepsilon}\right) .
\end{aligned}
$$

Re-arranging and dividing by τ :

$$
\begin{equation*}
\lambda V_{\tau, h}\left(x_{0}\right) \leq \ell\left(u_{0}, x_{0}\right)+\left\langle f\left(u_{0}, x_{0}\right), p_{0}\right\rangle+C\left(\tau+\frac{h^{2}+\tau^{2}}{\varepsilon \tau}\right) . \tag{6}
\end{equation*}
$$

Proof

Step 5. Conclusion.
Let recall the three main inequalities obtained so far:

$$
\begin{aligned}
\delta & \leq V_{\tau, h}\left(x_{0}\right)-V\left(y_{0}\right) \\
\lambda V\left(y_{0}\right) & \geq \ell\left(u_{0}, y_{0}\right)+\left\langle f\left(u_{0}, y_{0}\right), p_{0}\right\rangle \\
\lambda V_{\tau, h}\left(x_{0}\right) & \leq \ell\left(u_{0}, x_{0}\right)+\left\langle f\left(u_{0}, x_{0}\right), p_{0}\right\rangle+C\left(\tau+\frac{h^{2}+\tau^{2}}{\varepsilon \tau}\right) .
\end{aligned}
$$

Proof

We deduce that

$$
\begin{aligned}
\lambda V_{\tau}\left(x_{0}\right)-\lambda V\left(y_{0}\right) \leq & \ell\left(u_{0}, x_{0}\right)-\ell\left(u_{0}, y_{0}\right)+\left\langle f\left(u_{0}, x_{0}\right)-f\left(u_{0}, y_{0}\right), p_{0}\right\rangle \\
& +C\left(\tau+\frac{h^{2}+\tau^{2}}{\varepsilon \tau}\right) \\
\leq & C\left\|x_{0}-y_{0}\right\|+C\left(\tau+\frac{h^{2}+\tau^{2}}{\varepsilon \tau}\right) \\
\leq & C\left(\varepsilon+\tau+\frac{h^{2}+\tau^{2}}{\varepsilon \tau}\right) .
\end{aligned}
$$

Choosing $\varepsilon=\tau^{1 / 2}$, we finally obtain

$$
\delta \leq V_{\tau}\left(x_{0}\right)-V\left(y_{0}\right) \leq \frac{C}{\lambda}\left(\tau^{1 / 2}+\tau+\frac{h^{2}+\tau^{2}}{\tau^{3 / 2}}\right) \leq C\left(\tau^{1 / 2}+\frac{h^{2}}{\tau^{3 / 2}}\right) .
$$

1 Generalities

- Summary
- Guideline

2 Discretization of the DP-operator

- Time-discretization
- Space-discretization
[3 Iterative mechanisms
- Value iteration
- Policy iteration

4 Error analysis
5 Variants
■ Neural networks

- Q-learning

Variants

In this section: two techniques from the machine-learning community, in relation with optimal control.

■ Neural networks
■ Q-learning.
Reference
D. Bertsekas. Reinforcement learning and optimal control.

Athena scientific, July 2019.

Neural networks

A general problem. Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
■ Consider a finite subset $\mathcal{G}=\left\{y_{1}, \ldots, y_{K}\right\}$ of \mathbb{R}^{n}.
■ Assume that $V_{k}:=V\left(y_{k}\right)$ is known for all $k=1, \ldots, N$.
Knowing V_{1}, \ldots, V_{k}, can we find a function \bar{v} which "faithfully" represents V ?

- This question is not clearly formulated at a mathematical level... but it arises in the numerical resolution of every problem that involve functions of one or several real numbers (PDEs, infinite-dimensional optimization, etc.)
- Interpolation is an answer.

Neural networks

A general approach. Fix a set \mathcal{V} of "suitable" functions and chose \bar{v} as a solution to the least-square problem:

$$
\min _{v \in \mathcal{V}} \sum_{k=1}^{K}\left|v\left(y_{k}\right)-V_{k}\right|^{2}
$$

If \mathcal{V} is convex, then the optimization problem is convex; one can hope to solve it globally.

A typical choice: \mathcal{V} is a finite-dimensional vector space.

Neural networks

Parametric functions. Most of the time, \mathcal{V} is given in a parametric form. Let R be a set of parameters and let $W: \mathbb{R}^{n} \times R \rightarrow \mathbb{R}$ be known explicitely. Then one can define:

$$
\mathcal{V}=\{v \mid \exists r \in R, v(x)=W(x, r)\}=\{W(\cdot, r) \mid r \in R\} .
$$

If R is convex and W affine with respect to r, then \mathcal{V} is convex.
The least square problem is then equivalent to:

$$
\min _{r \in R} \sum_{k=1}^{K}\left|W\left(y_{k}, r\right)-V_{k}\right|^{2}
$$

For a solution \bar{r}, define $\bar{v}=W(\cdot, \bar{r})$.

Neural networks

Example:

$$
W(x, r)=\sum_{k=1}^{K} \mu\left(y_{k}, x\right) r_{k},
$$

where μ is an interpolation map.
The trivial solution to the least-square problem is $r_{k}=V_{k}$.

Neural network

A neural network is a specific parametric function, described by:

- Number of layers: I

■ Number of hidden units: d_{1}, \ldots, d_{I-1}.
■ Activation function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$.
Many popular choices for φ. We define $d_{0}=n$ and $d_{l}=1$.
Notation.
■ Given k, let $\varphi^{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be defined by

$$
\varphi^{k}(x)=\left(\varphi\left(x_{1}\right), \varphi\left(x_{2}\right), \ldots, \varphi\left(x_{k}\right)\right) .
$$

- Given $\beta \in \mathbb{R}^{k}$ and $w \in \mathbb{R}^{k \times I}$, let $\phi_{\beta, w}: \mathbb{R}^{\prime} \rightarrow \mathbb{R}^{k}$ be defined by

$$
\phi_{\beta, w}(x)=\varphi^{k}(\beta+w x) .
$$

Neural network

We consider the parametric function:

$$
W(x, r)=\beta_{l}+w_{l}\left(\phi_{\beta_{l-1}, w_{l-1}} \circ \ldots \circ \phi_{\beta_{2}, w_{2}} \circ \phi_{\beta_{1}, w_{1}}(x)\right),
$$

where

$$
\begin{aligned}
& r=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}, w_{1}, w_{2}, \ldots, w_{l}\right) \in R \\
& \text { where: } R=\left(\prod_{i=1}^{l} \mathbb{R}^{d_{i}}\right) \times\left(\prod_{i=1}^{l} \mathbb{R}^{d_{i} \times d_{i-1}}\right) .
\end{aligned}
$$

Q-learning

Recall the (discrete) dynamic programing equation:

$$
V(x)=\inf _{u \in U}\left(\tau \ell(u, x)+\beta \sum_{y \in \mathcal{G}} p(y \mid u, x) V(y)\right)
$$

with $\beta=(1-\lambda \tau) \in(0,1)$. We skip the indices τ and h.
A new decoupling, involving $V: \mathcal{G} \rightarrow \mathbb{R}$ and a \mathbf{Q}-function $Q: U \times \mathcal{G} \rightarrow \mathbb{R}:$

$$
\left\{\begin{align*}
Q(u, x) & =\tau \ell(u, x)+\beta \sum_{y \in \mathcal{G}} p(y \mid u, x) V(y) \tag{i}\\
V(x) & =\inf _{u \in U} Q(u, x) \tag{ii}
\end{align*}\right.
$$

As before, one can design a fixed point mechanism based on:

$$
Q \xrightarrow{(i i)} V \xrightarrow{(i)} Q .
$$

Q-learning

We focus on the equation (i) and assume now that U is finite. Let U, X, and Y be three random variables in $U \times \mathcal{G} \times \mathcal{G}$. We assume that for all (y, u, x),

$$
\mathbb{P}[\mathrm{Y}=y \mid \mathrm{U}=u, \mathrm{X}=x]=p(y \mid u, x)
$$

Let $\mu(u, x)=\mathbb{P}[(\mathrm{X}, \mathrm{U})=(x, u)]$. Given $\phi: U \times \mathcal{G} \times \mathcal{G} \rightarrow \mathbb{R}$, we have

$$
\mathbb{E}[\phi(\mathrm{U}, \mathrm{X})]=\sum_{(u, x) \in U \times \mathcal{G}} \phi(u, x) \xi(u, x) .
$$

Q-learning

For any function $\phi: \mathcal{G} \times U \times \mathcal{G} \rightarrow \mathbb{R}$, we have:

$$
\mathbb{E}[\phi(\mathrm{X}, \mathrm{U}, \mathrm{Y})]=\sum_{(y, u, x) \in U \times \mathcal{G}} \phi(x, u, y) p(y \mid u, x) \xi(u, x)
$$

Lemma 10
Let $(u, x) \in U \times \mathcal{G}$. Let $v: \mathcal{G} \rightarrow \mathbb{R}$. The unique solution to the following problem

$$
\inf _{w \in \mathbb{R}} \sum_{y \in \mathcal{G}} p(y \mid u, x)(v(y)-w)^{2}
$$

is given by

$$
w=\sum_{y \in \mathcal{G}} p(y \mid u, x) v(y) .
$$

Q-learning

We can now reformulate equation (i).

$$
\begin{aligned}
Q(u, x) & =\tau \ell(u, x)+\beta \sum_{y \in \mathcal{G}} p(y \mid u, x) V(y) \\
& =\sum_{y \in \mathcal{G}} p(y \mid u, x)(\tau \ell(u, x)+\beta V(y)) \\
& =\underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{y \in \mathcal{G}} p(y \mid u, x)(\tau \ell(u, x)+\beta V(y)-q)^{2} .
\end{aligned}
$$

Let \mathcal{Q} denote the set of "suitable" Q-functions. For solving (i), we can consider the optimization problem:
$\inf _{Q \in \mathcal{Q}} \sum_{(u, x) \in U \times \mathcal{G}} \sum_{y \in \mathcal{G}}(\tau \ell(u, x)+\beta V(y)-Q(u, x))^{2} p(y \mid u, x) \mu(u, x)$.

Q-learning

Equivalently:

$$
\inf _{Q \in \mathcal{Q}} \mathbb{E}\left[(\tau \ell(U, X)+\beta V(Y)-Q(U, X))^{2}\right]
$$

The problem can be sampled. Consider a "black box" which can simulate K outcomes of the random variable $(\mathrm{Y}, \mathrm{U}, \mathrm{X})$, denoted $\left(y_{k}, u_{k}, x_{k}\right)_{k=1, \ldots, K}$, as well as $\ell_{k}=\ell\left(u_{k}, x_{k}\right)$.

An approximation of the problem is:

$$
\inf _{Q \in \mathcal{Q}} \sum_{k=1}^{K}\left[\left(\tau \ell_{k}+\beta V\left(y_{k}\right)-Q\left(u_{k}, x_{k}\right)\right)^{2}\right] .
$$

Q-learning

Last remarks!
■ This is a model-free approach: the knowledge of ℓ and p is transfered to the black box.

- In the iterative algorithm, V only needs to be evaluated at the points y_{k}.
■ Recent application: various board games, video games, automotive driving, etc.

