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Lecture 4:
Numerical resolution of the HJB equation

m Goal: constructing a numerical scheme for the resolution of
the HJB equation.

m /ssues: time and space discretization, iterative schemes for the
discretized equation, convergence analysis.
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Problem formulation

Data:
m A parameter A > 0, a compact subset U of R™.
m Two maps f: (u,y) € UxR" - R" and
0: (u,y) € UxR" — R, bounded and Lipschitz continuous.

Problem:
m State equation: for x € R” and u € Uy, there is a unique
solution y[u, x] to the ODE

y(t) = f(u(t),y(t)), y(0)=x.
m Cost function W, for u € Uy, and x € R":
W(u,x) = / e (u(t), ylu, X(8)) dt.
0
m Optimal control problem and value function V:

V(x) = uie?joo W (u, x). (P(x))
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Dynamic programming

Given 7 > 0, the “DP-mapping”
T:veBUCR")— Tve BUCR"),

is defined by

Tv(x) = inf (/OT e U(u(t), y(£)) dt + e v(y[u,x)(7)) ).

uel,

The DP-mapping is e " -Lipschitz continuous. The value function
V is the unique solution to the fixed point equation

Tv=v, veBUCR").
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HJB equation

We define the pre-Hamiltonian H and the Hamiltonian #H by

H(u,x, p) = €(u,x) + (p, f(u, x)),
H(x, p) = umellr} H(u, x, p).

The value function is the unique viscosity solution to the HJB
equation

AV(x) — H(x,VV(x)) = 0.

Remark. The HJB equation can be heuristically derived by
calculating a first-order Taylor expansion (with respect to 7) of the
DP-mapping.
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Towards numerics

m Purpose: computing a numerical approximation of V.

m Yields a feedback.
m Can be used to decouple (in time) the optimal control problem.

m A bad idea: discretizing the HJB equation by “brute force”,
e.g. in dimension 1:

V(x4 0x) — V(x)) _o.

AV(x) — H(X, S

This is doomed to failure!

m Key idea:
m discretize the DP-mapping: 7 ~» 7T, in time and space,
m solve the fixed point equation: v =7, ,v.
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Discretization of the DP-operator
m Time-discretization
m Space-discretization
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Time-discretization

Recall the definition of T

Tv(x) = inf (/OT e*/\tﬂ(u(t),y(t)) dt + ef/\Tv(y[u7 x](7)))

UEZ/[T

Ingredients for the time-discretization, assuming 7 small:
U; ~» a constant control on (0, 7)
/OT e M(u(t),y(t))dt  ~ 70(u,x)
e vyl X](1)) ~ (1= AT)v(y[u, x](7))-

Remarks:
m at the moment we do note try to simplify y[u, x](7)

m calculations similar to those for ¢.
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Time-discretization

We fix now 7 > 0 such that 1 — A7 > 0 (i.e. 7 < 1/X) and define:

T-v(x) = min (Tﬁ(u,x) +(1- )\T)v(y[u,x](T))>.

uelU

Remark: notation y[u, x] extended to u € U.

The map T, is well-defined from BUC(R") to BUC(R"). It is
Lipschitz with modulus (1 — A7) for the supremum norm.

Proof. Exercise (adapt ideas from the previous lecture).

Corollary 4
There exists a unique V; € BUC(R") such that V. = T; V;.
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Time-discretization

Idea: we give an interpretation of V. as value function of a
discretized optimal control problem.

Notation: UN is the set of sequences u = (uy)ken such that
ux € U, Vk € N.

Control set and state equation: given u € UN, define
yrlu, x] = y[u, x], where u € Uy is defined by

u(t) = ug, forae. te (kr,(k+1)7).

Cost: Wr(u,x) =73 (1= A7)50(ug, y-[u, x] (k7).
k=0

Remark. We have “sampled” Uy, and discretized W (x, u).
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Time-discretization

Let us consider, for x € R", the optimal control problem

Vo (x) = uiEnJN W, (u, x). (P-(x))

It holds: V,(x) = V,(x).

Proof. It suffices to verify that

A~

VT = 7;\77'3

i.e. to verify that V, satisfies an appropriate dynamic programming
principle.
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Time-discretization

The flow property yields:

yrlu, X|(k) = y [, yr[uo, x](7)]((k — 1)7),
where ii € UY is defined by iy = uj.1. We have:
Wi (u, x) = 70(uo, x) + 7Y (1= A7) e(ug, yr[u, x] (k7))

k=1
= 7l(ug,x) + (1 — A7)~

> (- AT)k—le@k_l,yT [,y [uo, x](7)] ((k — 1)7)) .

k=1
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Time-discretization

The flow property yields:
Yrlu, X|(k7) = y7[d, y-[uo, x](7)]((k — 1)7),
where ii € UY is defined by iy = uj.1. We have:
W:(u, x) = 7€(uo, x) + TZ (1- )\T Uuk, yr[u, x](kT))
= 7¢(uo, x) + (1 - >\7')'

> (- AT)k—le(ak_l,yT (i1, yr[uo, x](7)] ((k — 1)7)) .

k=1
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Time-discretization

The flow property yields:
yrlu, x](k7) = yr[i@, yr[uo, X](7)]((k — 1)7),
where i € UN is defined by dx = uky1. We have:
W, (u, x) = 7¢(uo, x) + 72(1 — A1) 0 ug, yo[u, X](kT))
k=1
= TE(UO,X) + (]. — AT) .

73— A<, v [ e [0, X)) (KT) )
k=0

= W—,—(ﬁ,y-r [UO 7X] (T))
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Time-discretization

We obtain:
W (u, x) = 7€(uo, x) + (1 — AT)Wr(d, y-[uo, x](T)).
Proceeding as in the previous lecture, we arrive at:

V.(x) = uienJN W, (u, x)

= inf (7l x) + (1= A7) inf Wr(@yrlu. x](7))

= ui)nefu (T€(uo, X) + (]- - )\T) VT(yT[U07X](T))>

= T Vy(x).
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x)

Dynamic Prog.

l

V= TV Discretization VT _ 7;_ VT
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x) Discretization . proplem P.(x)

Dynamic Prog.

l

V'r :7;'\/7'
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x) Discretization . proplem P.(x)

Dynamic Prog. Dynamic Prog.
V=TV Discretization VT _ 7;_ V7-

The “discretization” and “dynamic programming” phases
commute.
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Space-discretization

We need to further simplify the operator 7.

Difficulties and solutions:

Impossible to manipulate (numerically) a function on R".

Evaluation of y,[u, x](7)?
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Space-discretization

We need to further simplify the operator 7.

Difficulties and solutions:

Impossible to manipulate (numerically) a function on R".

m Store v(x) for finitely many points x.
m Value of v is needed at an arbitrary x — interpolation.

Evaluation of y,[u, x](7)?
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Space-discretization

We need to further simplify the operator 7.

Difficulties and solutions:

Impossible to manipulate (numerically) a function on R".

m Store v(x) for finitely many points x.
m Value of v is needed at an arbitrary x — interpolation.

Evaluation of y,[u, x](7)?
m Explicit Euler scheme: y.[u, x](7) = x 4+ 7f(u, x).
m Many other possible schemes.
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Space-discretization

Interpolation.

Let G be a countable subset of R”, called grid. We assume that
there exists an interpolation map

w: G xR"—[0,1]
such that for all x € R”,

x= uly,x)y, Y uly,x)=1

y€g y€eg

In words: each x is a convex combination of some points y of
the grid, with weights u(y, x).
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Space-discretization

Notation: L*°(G) is the space of bounded functions from G to R.

Given v € L*°(G), let the interpolation [v] € L>°(R") be defined
by
VI(x) = > v(¥)uly, x).
yeg
In words: [v](x) is the convex combination of the reals v(y), for
the weights u(y, x).
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Space-discretization

Example of grid and interpolation map.
A natural choice is G = Z". Let us construct a suitable p,.

Case n=1. Let x € R, let k € Z be such that k < x < k+ 1.

Then,
x=(k+1—-x)k+(x—k)(k+1).

Thus we can define:

(k+1—x) ify=k
pa(y, x) = (x—k) ify=k+1
0 otherwise.

Obviously, p1(y,x) €[0,1] and >_ 7 pa(y, x) = 1.
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Space-discretization

Figure: Interpolation in dimension 1
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Space discretization

General case n > 1. Let x = (x1, ..., xp) € R".
Let y = (y1,...,¥n) € Z". Let us define pq(y, x) by

pn(y, %) = [ ] #a(ye ) € [0,1].
k=1

Then we have

n

> ) = Y2 (TT i)

YEzZn yezZ" k=1

= f[ (> mrxd )=1.
k=1

YKEZ

=1
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Space discretization

Moreover,
n
S aly, ¥y = (H 11 (v xi) (v ---,yn))
yezn yeLn k=1
= Z Z (Nl()/laxl))/ly/1«2()/27X2))/27 -.-7Mk(Yk7Xk))/k>
1€Z ynEZ
<Z pa(yrs xa)ya, Z p2(y2; X2)y2, s Z fn(Yns Xn)y, n>
y1€Z V2€Z Yn€Z

= (X1, ..., Xn) = X.
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Space discretization

Some remarks.

m Many other possibilities for a grid and for the associated
interpolation function. In general, given x € R”, the set

{y € Gluly,x) >0}

should be (ideally) of small cardinality and should contain
points close to x.

m For the grid Z" and the proposed interpolation function pp,
the evaluation of

[v](x Z fen(y; x)
yezZn

requires 2" operations.
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Space discretization

For the grid
gn,h = tha

one can simply define
/’Ln,h(y7x) = /Ln(y/h,X/h)

We have, using the change of variable y = hy’,

%z Y waly' x/h)y' = Mn()//hvx/h)%'

rezn S
y Y gn'h ://'n,h()@X)

Multiplying by h, we get

x= Y panly,x)y.

yegmh
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Space discretization

Back to the DP-mapping. We replace the term v(y.[u,x](7)) b
the interpolation

VI + 7F(u, %)) = Y uly, x + 7 (0, ))v(y),
y€eg

The transition mapping p is defined by
p(ylu,x) = u(y,x + 7f(u, x)). Note that

plylu,x) €[0,1], > plylu,x) =1.
yeg

Thus p(y|u, x) can be interpreted as a probability transition from
x to y, under the control u.
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Space discretization

For v € L*°(G), the discrete DP-mapping is defined by

Trnv(x) = JQL (Tﬁ(u,x) + (1= A7)[v](x + Tf(u,x)))

= inf (7t(u,%)+ (1= A1) Y plylu V()

yeg
It is still well-defined and Lipschitz with modulus (1 — A7), for the

uniform norm.

Remarks.

m From now on: we only use p(y|u, x), which contains both the
interpolation map and the discretization of the ODE.

m The index h > 0 will be used to describe the quality of the
space discretization.
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Space-discretization

Further remarks.

m We still need to manipulate elements of L>°(G), impossible
since G is infinite. Further domain restriction to be applied,
we do not discuss this aspect.

m The practical computation of the infimum in 7., may be
difficult. Typically, p(y|u, x) is non-differentiable. Extreme
solution: discretization of U, minimization by enumeration.

m Curse of dimensionality.

card(B(0, R) N hZ") = O((%)”)

— Exponential complexity with respect to the dimension n.
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Space discretization

Interpretation of the fixed point equation:
Vih=TenVen, Ve € L7(G).

Notation: L°(N x G; U) is the set of functions from N x G to U.
Given u € L*°(N x G; U), let Y[u, x] denote the Markov chain

defined by
P Y[u,xl(k+1) = y'| YTu,xI(K) = y| = p(y'lu(k,y). )
Y[u,x](0) = x.
In words:
m At time k, if the Markov chain is equal to y, the control

u(k,y) is employed.
m The probability to move to y’ is given by p(y'|u(k,y),y).
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Space-discretization

Cost function:

TOO - Tk ,
W, [;)1 A z( (k, Y(K)), Y(k))}

where Y = Y[u, x].

The unique solution V., to the fixed-point equation

Vih = TenVrn

is the value function of the following problem:

Vin(x) = inf W, h(u, x).

P,
u€L>®(NxG;U) ( ’h)
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The analysis can be (again!) summarized with a commutative
diagram:

Problem P(X) Discretization Problem PT,h(X)

Dynamic Prog. Dynamic Prog.

l l

Discretization
voTy Do,y TV,

The “discretization” and “dynamic programming” phases
commute.
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Iterative mechanisms
m Value iteration
m Policy iteration
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Value iteration

Value iteration algorithm.
m Input: vo: G — R.
m For k=0,1,...,K, do

iyl = Trp Vi

m Output: vk.

The sequence (vk)k=01,.. converges linearly to V. j, for the
supremum norm. More precisely:

Vi = Villioo(gy < (1 = AT)¥||vo — Vi pl-

Proof. by induction. Recall that 77 is (1 — A7)-Lipschitz.
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Policy iteration

Definition 8

Let L*°(G, U) denote the set of mappings from G to U. We call
any element u € L*(G, U) a policy.

Key idea. Split the fixed equation v = 7, ,v into a coupled system
of equations:

v(x) = Tl(u(x),x) + (1 = A7) 22 g Ply[u(x), x)v(x) (1)

u(x) € alf;emuin Tl(a, x) + (1= A7) 3 g Py, x)v(x) (i)

involving v € L*°(G) and u € L*>(G, U).
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Policy iteration

Remarks.

m For a given policy u € L*(G, U), equation (/) is a linear
fixed-point equation with respect to v. It can be written in
the abstract form

v="Tv,
where 7. 0 L°(G) — L*°(G) is (1 — A7)-Lipschitz-continuous

for the supremum norm.

m For a given v € L*°(G), there exists a policy u € L>(G, U)
satisfying (if).
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Policy iteration

Policy iteration method.
m Input: up € L(G, V).
m For k=0,1,..K, do

m Solve viy1 = T Viq1.

7—7

m Update the policy: find ug,1 such that for all x € G,

ukt1(x) € azgemuin <T€(a,x) +(1- )\T)};gp(yOZ,X)Vk+1(X)).

m Output: vk and uk.
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Error analysis
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Context. Let V. denote the solution to the fixed point equation
Vih = TrnVirh,

where

Tev(x) = inf (70(u,x) + (1= 7)Y p(ylu,x)v(y))-

uel
y€eg

A specific transition mapping p: G x U x R" — [0, 1] has been
previously constructed, we consider now a general mapping.

Goal of the section: to compare V. , with the value function of
the original problem V.
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Assumptions

Assumptions: there exists C > 0 such that Vx € R", Vu € U,

S yeq PUYIuX) = 1, (A1)

|2, plu Xy = (x4 Flu)m)| <2 (a2)

Sy PUYIuX) ly = (x + F(u, )7)|2 < CH. (A3)
Interpretation:

m Assumption (A2) says that

Zyegp(y,U,X)y X+ f(U,X)T.

m Assumption (A3) says that in this approximation formula, grid
points close to x + f(u, x)7 should be employed...

m ...it is also a bound on the “randomness” of the Markov chain.
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Main result

Theorem 9

Assume that V is Lipschitz continuous and that assumptions
(A1)-(A3) hold true. Then, there exists a constant C' > 0,
independent of (7, h,G), depending on C, such that

h2
Vi) = V()| < €' (5575 +772).

Remarks.
m Lipschitz continuity is guaranteed if A > Ls. Extensions of the
theorem do exist when V is only Holderian.
m Appropriate to choose 7 = h, bound: 2C’'h'/2.
m In the proof, we make use of a constant C whose value can

be updated from line to line. It is independent of 7, h, and
¢ (to appear later).
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Proof. Step 1: decoupling of the variables. Our goal is to find an
upper bound of

d:= )s(zg (Ven(x) = V(x))

and a lower bound of

& = inf (Von(x)— V(x)).

x€G

In this proof, we will only explain how to bound (from above) .
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The key idea is to start with:

5= sup (Von(x) — V(x))

x€g

x€g

x — 2
< sup Wiy) = (Vo) - Vi) - X200,
yeR”

where € € (0, 1] is arbitrary.

m Proof of the inequality: take x = y.

m Small deterioration since for € > 0 very small, the optimal x
and y are close to each other.
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Simplifying assumption: there exists a pair (xp, yo) € G x R”,
depending on ¢, which maximizes V..

[If this was not the case, an arbitrarily small modification of W, could be
done, so that the assumption holds true; we do not detail this aspect.]

We have:
2
— X
§ < Vin(xo) — V(y) — HyogoH < Vrm(x0) — V(yo).

We look for an upper bound of V. ,(xo) and a lower bound of
V(y0)-
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Step 2: estimate of ||yo — xo||. The inequality

wé‘(an XO) S \I’]E(X07y0)7
yields

2 2
X0 — X0 0 — X0
_ || H < VT,h(XO) _ V(y0) _ ||y H )

V‘r,h(XO) - V(Xo) - 5
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Step 2: estimate of ||yp — xo||. The inequality
wE(X07X0) S w&(X07y0)7
yields

~ llyo — xoll?

V(o) < ~V(0) — 20—

Re-arranging:
lyo — x0l* < e(V(x0) = V(30)) < Cellyo — xol,
since V is Lipschitz. Thus,

lyo — xol| < Ce.
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Step 3: lower bound of V/(yp).
Let ®: R” — R be defined by

ly —xoll?
)=

Since yp maximizes W.(xo, -), we have for any y € R":

ws(XO,Y) < \UE(XOa)/O)
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Step 3: lower bound of V/(yp).
Let ®: R" — R be defined by

ly =l

d(y) = E

Since yp maximizes W.(xo, ), we have for any y € R":

X0 — 2 X0 — 2
H 0 y” < VT,h(XO) o V(yO) N H 0 YOH

Vin(xo) = V(y) — . .
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Step 3: lower bound of V/(yp).
Let ®: R” — R be defined by

ly —xoll?
)=

Since yp maximizes W.(xo, -), we have for any y € R":

=V(y) +®(y) < —V(x) + ®(x0)
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Step 3: lower bound of V/(yp).
Let ®: R” — R be defined by

ly —xoll?
)=

Since yp maximizes W.(xo, -), we have for any y € R":

V(y) — ®(y) > V() — ®(»)

Thus V — ® has a global minimizer in yp.
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Let us set A )
Xry —
po = V&(y0) = ofyo_

Since V is a supersolution of the HJB equation, we have

AV(yo0) — H(yo, po) > 0.

Denote by ug € U the control minimizing the pre-Hamiltonian in
H(-, yo0, po), we have:

AV(y0) > H(yo, po) = £(uo, yo) + {po, f(uo, y0))- (1)
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Step 4: upper bound for V; p(xo). We use the dynamic
programming principle. We have:

V. h(x0) < 70(uo, x0) + (1= A7) > plyluo, x0) Vrn(y).  (2)
yeg

We next bound V; 4(y). We have: W.(y, y) < W.(x0, ¥0), which
yields

o — ol

ly — ol
Ven(y) = Vo) — B < Ven(x0) — V(yo) .
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Step 4: upper bound for V; p(x0). We use the dynamic
programming principle. We have:

V: h(x0) < 7€(u0,x0) + (L= A7) Y plyluo, x0) Ven(y)-  (2)
yeg

We next bound V. 4(y). We have: V.(y, y) < W.(x0, y0), which
yields
1y = yoll> = lx0 — yoll?

- NG

Ven(y) < Ven(xo) +

We next re-arrange the term ||y — yol|2 — ||x0 — yo||*.
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Proof
We have:
ly = yoll® = [Ix0 = yolI> = 2{y — x0, x0 — o) + Ily — xol?
= 2(y — (x0 + f(uo,x0)7), X0 — Yo)
_|_
+ . (4)

Injecting (4) in (3) and then (3) in (2), we get:
V7-7h(Xo) < E(Uo,Xo)T + (1 — )\T)(V7-7h(Xo) + a1+ ax+ ), (5)

where the three terms ai, a», and as are defined and bounded right
after.
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Proof

Estimate of (a1). We have

(a1) = 23 (Pl )y — (0 + F(u,30)). 30 — 30) )

y€G
< 2((3 pyluo, %0)y) — (o + Fluo, %0)7). %0 — y0)
yE€g
< 2] (32 ptrluosx0)y) — (o + £, )7 - 0 = o
yeg
< 2(cr)(ce)

by Assumption (A2).
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Estimate of (a2). We have

(22) = 23" plyluo. o)

y€eg

2
= g<f(U0,X0),X0 - y0>T
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Estimate of (a3). We have
1
(a3) = 2 > p(yluo, x0)
yeg

2
< 23 plyluo,x0) (Ily = (0 + F(uo,x0)7) 2 + [ (v, yo) 1)
yeg

<

9

by Assumption (A3).
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Proof

Let us combine (5) with the three obtained bouds:

Vq—,h(XO) < E(Uo,Xo)T + (1 - )\T) Vq—,h(XO)
+ (1= A7)
+(1—A7)C7?

+(1— A7)
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Proof

Let us combine (5) with the three obtained bouds:

Vq—,h(XO) S E(UO,X())T + (1 — )\T) VT,h(XO)
+
+ C72

+
Re-arranging and dividing by 7:

h? + 72
ET

AV, n(x0) < U(uo, x0) + (f(uo, x0), po) + C<T +

). (6)
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Step 5. Conclusion.

Let recall the three main inequalities obtained so far:

§ < Von(x0) — Vo),

AV(y0) = £(uo, yo) + (f(uo; y0), Po)

AV; h(0) < €0, X0) + (F(uo,50), po) + C (7 +

h? + 72
ET

).
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Proof

We deduce that

AVir(x0) = AV (y0) < £(uo, x0) — €(uo, yo) + (f(uo, x0) — f(uo,¥0), Po)
h? +7'2>

ET

+C(r+

IN

h2—|—7'2>

Clixo = yoll + € (7 +
ET

h? +T2>

< C<€+T+
ET

1/2

Choosing € = /<, we finally obtain

Cr 1y h?+ 72 12, I
5gv7(xO)—V(yo)sX(T +T+W)SC(T +m)'
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In this section: two techniques from the machine-learning
community, in relation with optimal control.

m Neural networks

m Q-learning.

Reference

® D. Bertsekas. Reinforcement learning and optimal control.
Athena scientific, July 2019.
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Neural networks

A general problem. Let V: R" — R.
m Consider a finite subset G = {y1, ..., yx } of R".
m Assume that Vi := V/(y) is known for all k =1,..., N.

Knowing Vi,..., V), can we find a function v which “faithfully”
represents V7

m This question is not clearly formulated at a mathematical
level... but it arises in the numerical resolution of every
problem that involve functions of one or several real numbers
(PDEs, infinite-dimensional optimization, etc.)

m Interpolation is an answer.
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Neural networks

A general approach. Fix a set V of “suitable” functions and chose
v as a solution to the least-square problem:

m|n z\v vi) — Vil?.

If V is convex, then the optimization problem is convex; one can
hope to solve it globally.

A typical choice: V is a finite-dimensional vector space.



Variants
000®000

Neural networks

Parametric functions. Most of the time, V is given in a
parametric form. Let R be a set of parameters and let
W:R" x R — R be known explicitely. Then one can define:

V=A{v|3reR, v(x)=W(x,r)} ={W(,r)|reR}.

If R is convex and W affine with respect to r, then V is convex.
The least square problem is then equivalent to:

K
i w — Vi |2
min ZI Vi, 1) — Vi

For a solution 7, define v = W(-, ).
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Neural networks

Example:

where p is an interpolation map.

The trivial solution to the least-square problem is ry, = V.
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Neural network

A neural network is a specific parametric function, described by:
m Number of layers: /
m Number of hidden units: dy,...,d;_1.
m Activation function ¢: R — R.

Many popular choices for . We define dyp = n and d; = 1.

Notation.
m Given k, let cpk: R* — Rk be defined by

P (x) = (p0x), p(x2), ooy 0 (xi))-

m Given 8 € RF and w € R¥*/ let ¢5,,: R! — R¥ be defined by

P (x) = (B + wx).
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Neural network

We consider the parametric function:

W(x,r) = B+ w ((Zsﬁlfl»wlfl ...0 P8, w, © ¢51,W1(X))7
where

r= (617527 "‘7/8/7 wi, wa, ..., WI) € R7
i

/
R d: dixdi1)
where: R (II;II]R )x (HR x 1)

i=1
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Q-learning

Recall the (discrete) dynamic programing equation:

V(x) = inf (7e(u,x)+ 8 plylu, x)V(y),

imzj
uec
yeg

with 5= (1 — A7) € (0,1). We skip the indices 7 and h.

A new decoupling, involving V: G — R and a Q-function

QR: UxgG—R:
Q(va): TE(U’X)+52yegp(y‘uax)v(y) (l)
V(x) = Jgi& Q(u, x). (i)

As before, one can design a fixed point mechanism based on:

Q W v g
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Q-learning

We focus on the equation (i) and assume now that U is finite.
Let U, X, and Y be three random variables in U x G x G. We
assume that for all (y, u, x),

P[Y =y|U=u, X=x] =p(y|u,x).
Let p(u,x) =P[(X,U) = (x,u)]. Given ¢: Ux G x G — R, we

have
E[QS(U7X)] = Z ¢(U,X)§(U,X).

(u,x)eUxG
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Q-learning

For any function ¢: G x U x G — R, we have:

E[6(X.UYV)] = > o(x,uy)p(ylu,x)¢(u, x).

(y,u,x)eUxG

Lemma 10

Let (u,x) € U x G. Let v: G — R. The unique solution to the
following problem

inf > p(ylu,x)(v(y) — w)?

Yeg

is given by

w =" p(y|u,x)v(y).

yeg
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Q-learning

We can now reformulate equation (/).

Q(U,X) = TK(U,X) + BZ p(y‘U,X) V(y)

yeg

=S plylux) (rt(u,x) + BV(y))

yeg

= argmin Z p(ylu, x) (Tﬁ(u,x) + BV(y) — q)z.

geR vEG

Let Q denote the set of “suitable” Q-functions. For solving (i), we
can consider the optimization problem:

e >3 (rtux) + V() — Qux)) Pyl X)n(u,X).
(u,x)eUXG yeg
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Q-learning

Equivalently:
inf, E[(Tz(U,X) FBV(Y) - Q(U,X))z]

The problem can be sampled. Consider a "black box” which can
simulate K outcomes of the random variable (Y, U, X), denoted

(yk, Ukyxk)kzl,...,K. as well as Ek = €(uk,xk).

An approximation of the problem is:

inf 3 (e + 8V0) — QLo ) |
k=1
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Q-learning

Last remarks!

m This is a model-free approach: the knowledge of ¢ and p is
transfered to the black box.

m In the iterative algorithm, V only needs to be evaluated at the
points y.

m Recent application: various board games, video games,
automotive driving, etc.
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