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Lecture 4:
Numerical resolution of the HJB equation

Goal: constructing a numerical scheme for the resolution of
the HJB equation.

Issues: time and space discretization, iterative schemes for the
discretized equation, convergence analysis.
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Problem formulation

Data:

A parameter λ > 0, a compact subset U of Rm.

Two maps f : (u, y) ∈ U × Rn → Rn and
` : (u, y) ∈ U × Rn → R, bounded and Lipschitz continuous.

Problem:

State equation: for x ∈ Rn and u ∈ U∞, there is a unique
solution y [u, x ] to the ODE

ẏ(t) = f (u(t), y(t)), y(0) = x .

Cost function W , for u ∈ U∞ and x ∈ Rn:

W (u, x) =

∫ ∞
0

e−λt`
(
u(t), y [u, x ](t)

)
dt.

Optimal control problem and value function V :

V (x) = inf
u∈U∞

W (u, x). (P(x))
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Dynamic programming

Given τ > 0, the “DP-mapping”

T : v ∈ BUC (Rn) 7→ T v ∈ BUC (Rn),

is defined by

T v(x) = inf
u∈Uτ

(∫ τ

0
e−λt`(u(t), y(t)) dt + e−λτv(y [u, x ](τ))

)
.

Theorem 1

The DP-mapping is e−λτ -Lipschitz continuous. The value function
V is the unique solution to the fixed point equation

T v = v , v ∈ BUC (Rn).
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HJB equation

We define the pre-Hamiltonian H and the Hamiltonian H by

H(u, x , p) = `(u, x) + 〈p, f (u, x)〉,
H(x , p) = min

u∈U
H(u, x , p).

Theorem 2

The value function is the unique viscosity solution to the HJB
equation

λV (x)−H(x ,∇V (x)) = 0.

Remark. The HJB equation can be heuristically derived by
calculating a first-order Taylor expansion (with respect to τ) of the
DP-mapping.
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Towards numerics

Purpose: computing a numerical approximation of V .

Yields a feedback.
Can be used to decouple (in time) the optimal control problem.

A bad idea: discretizing the HJB equation by “brute force”,
e.g. in dimension 1:

λV (x)−H
(
x ,

V (x + δx)− V (x)

δx

)
= 0.

This is doomed to failure!

Key idea:

discretize the DP-mapping: T  Tτ,h in time and space,
solve the fixed point equation: v = Tτ,hv .
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Time-discretization

Recall the definition of T :

T v(x) = inf
u∈Uτ

(∫ τ

0
e−λt`(u(t), y(t)) dt + e−λτv(y [u, x ](τ))

)
.

Ingredients for the time-discretization, assuming τ small:

Uτ  a constant control on (0, τ)∫ τ

0
e−λt`(u(t), y(t)) dt  τ`(u, x)

e−λτv(y [u, x ](τ))  (1− λτ)v(y [u, x ](τ)).

Remarks:

at the moment we do note try to simplify y [u, x ](τ)

calculations similar to those for ϕ̇.
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Time-discretization

We fix now τ > 0 such that 1− λτ > 0 (i.e. τ < 1/λ) and define:

Tτv(x) = min
u∈U

(
τ`(u, x) + (1− λτ)v

(
y [u, x ](τ)

))
.

Remark: notation y [u, x ] extended to u ∈ U.

Lemma 3

The map Tτ is well-defined from BUC (Rn) to BUC (Rn). It is
Lipschitz with modulus (1− λτ) for the supremum norm.

Proof. Exercise (adapt ideas from the previous lecture).

Corollary 4

There exists a unique Vτ ∈ BUC (Rn) such that Vτ = TτVτ .
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Time-discretization

Idea: we give an interpretation of Vτ as value function of a
discretized optimal control problem.

Notation: UN is the set of sequences u = (uk)k∈N such that
uk ∈ U, ∀k ∈ N.

Control set and state equation: given u ∈ UN, define
yτ [u, x ] = y [u, x ], where u ∈ U∞ is defined by

u(t) = uk , for a.e. t ∈ (kτ, (k + 1)τ).

Cost: Wτ (u, x) = τ

∞∑
k=0

(1− λτ)k`(uk , yτ [u, x ](kτ)).

Remark. We have “sampled” U∞ and discretized W (x , u).
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Time-discretization

Theorem 5

Let us consider, for x ∈ Rn, the optimal control problem

V̂τ (x) = inf
u∈UN

Wτ (u, x). (Pτ (x))

It holds: Vτ (x) = V̂τ (x).

Proof. It suffices to verify that

V̂τ = Tτ V̂τ ,

i.e. to verify that V̂τ satisfies an appropriate dynamic programming
principle.
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Time-discretization

The flow property yields:

yτ [u, x ](kτ) = yτ [ũ, yτ [u0, x ](τ)]((k − 1)τ),

where ũ ∈ UN is defined by ũk = uk+1. We have:

Wτ (u, x) = τ`(u0, x) + τ

∞∑
k=1

(1− λτ)k`(uk , yτ [u, x ](kτ))

= τ`(u0, x) + (1− λτ) ·

τ

∞∑
k=1

(1− λτ)k−1`
(
ũk−1, yτ

[
ũ, yτ [u0, x ](τ)

]
((k − 1)τ)

)
︸ ︷︷ ︸ .
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Time-discretization

The flow property yields:

yτ [u, x ](kτ) = yτ [ũ, yτ [u0, x ](τ)]((k − 1)τ),

where ũ ∈ UN is defined by ũk = uk+1. We have:

Wτ (u, x) = τ`(u0, x) + τ
∞∑
k=1

(1− λτ)k`(uk , yτ [u, x ](kτ))

= τ`(u0, x) + (1− λτ) ·

τ
∞∑
k=0

(1− λτ)k`
(
ũk , yτ

[
ũ, yτ [u0, x ](τ)

]
(kτ)

)
︸ ︷︷ ︸

=Wτ (ũ,yτ [u0,x](τ))

.
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Time-discretization

We obtain:

Wτ (u, x) = τ`(u0, x) + (1− λτ)Wτ (ũ, yτ [u0, x ](τ)).

Proceeding as in the previous lecture, we arrive at:

V̂τ (x) = inf
u∈UN

Wτ (u, x)

= inf
u0∈U

(
τ`(u0, x) + (1− λτ) inf

ũ∈UN
Wτ (ũ, yτ [u0, x ](τ))

)
= inf

u0∈U

(
τ`(u0, x) + (1− λτ)V̂τ (yτ [u0, x ](τ))

)
= Tτ V̂τ (x).
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x)∣∣
Dynamic Prog.y
V = T V Discretization−−−−−−−−−→ Vτ = TτVτ
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x)
Discretization−−−−−−−−−→ Problem Pτ (x)∣∣

Dynamic Prog.y
Vτ = TτVτ
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Time-discretization

The analysis can be summarized with a commutative diagram:

Problem P(x)
Discretization−−−−−−−−−→ Problem Pτ (x)∣∣ ∣∣

Dynamic Prog. Dynamic Prog.y y
V = T V Discretization−−−−−−−−−→ Vτ = TτVτ

The “discretization” and “dynamic programming” phases
commute.
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Space-discretization

We need to further simplify the operator Tτ .

Difficulties and solutions:

1 Impossible to manipulate (numerically) a function on Rn.

Store v(x) for finitely many points x .
Value of v is needed at an arbitrary x → interpolation.

2 Evaluation of yτ [u, x ](τ)?

Explicit Euler scheme: yτ [u, x ](τ) = x + τ f (u, x).
Many other possible schemes.
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Space-discretization

Interpolation.

Let G be a countable subset of Rn, called grid. We assume that
there exists an interpolation map

µ : G × Rn → [0, 1]

such that for all x ∈ Rn,

x =
∑
y∈G

µ(y , x)y ,
∑
y∈G

µ(y , x) = 1.

In words: each x is a convex combination of some points y of
the grid, with weights µ(y , x).
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Space-discretization

Notation: L∞(G) is the space of bounded functions from G to R.

Given v ∈ L∞(G), let the interpolation [v ] ∈ L∞(Rn) be defined
by

[v ](x) =
∑
y∈G

v(y)µ(y , x).

In words: [v ](x) is the convex combination of the reals v(y), for
the weights µ(y , x).
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Space-discretization

Example of grid and interpolation map.
A natural choice is G = Zn. Let us construct a suitable µn.

Case n = 1. Let x ∈ R, let k ∈ Z be such that k ≤ x < k + 1.
Then,

x = (k + 1− x)k + (x − k)(k + 1).

Thus we can define:

µ1(y , x) =


(k + 1− x) if y = k

(x − k) if y = k + 1

0 otherwise.

Obviously, µ1(y , x) ∈ [0, 1] and
∑

y∈Z µ1(y , x) = 1.
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Space-discretization

Figure: Interpolation in dimension 1
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Space discretization

General case n > 1. Let x = (x1, ..., xn) ∈ Rn.
Let y = (y1, ..., yn) ∈ Zn. Let us define µn(y , x) by

µn(y , x) =
n∏

k=1

µ1(yk , xk) ∈ [0, 1].

Then we have∑
y∈Zn

µn(y , x) =
∑
y∈Zn

( n∏
k=1

µ1(yk , xk)
)

=
n∏

k=1

( ∑
yk∈Z

µ1(yk , xk)︸ ︷︷ ︸
=1

)
= 1.
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Space discretization

Moreover,

∑
y∈Zn

µn(y , x)y =
∑
y∈Zn

( n∏
k=1

µ1(yk , xk)(y1, ..., yn)
)

=
∑
y1∈Z

...
∑
yn∈Z

(
µ1(y1, x1)y1, µ2(y2, x2)y2, ..., µk(yk , xk)yk

)
=
(∑

y1∈Z
µ1(y1, x1)y1,

∑
y2∈Z

µ2(y2, x2)y2, ...,
∑
yn∈Z

µn(yn, xn)yn
)

= (x1, ..., xn) = x .
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Space discretization

Some remarks.

Many other possibilities for a grid and for the associated
interpolation function. In general, given x ∈ Rn, the set{

y ∈ G |µ(y , x) > 0
}

should be (ideally) of small cardinality and should contain
points close to x .

For the grid Zn and the proposed interpolation function µn,
the evaluation of

[v ](x) =
∑
y∈Zn

µn(y , x)v(y)

requires 2n operations.
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Space discretization

For the grid
Gn,h := hZn,

one can simply define

µn,h(y , x) = µn(y/h, x/h).

We have, using the change of variable y = hy ′,

x

h
=
∑
y ′∈Zn

µn(y ′, x/h)y ′ =
∑

y∈Gn,h

µn(y/h, x/h)︸ ︷︷ ︸
=µn,h(y ,x)

y

h
.

Multiplying by h, we get

x =
∑

y∈Gn,h

µn,h(y , x)y .
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Space discretization

Back to the DP-mapping. We replace the term v(yτ [u, x ](τ)) by
the interpolation

[v ](x + τ f (u, x)) =
∑
y∈G

µ(y , x + τ f (u, x))v(y).

The transition mapping p is defined by
p(y |u, x) = µ(y , x + τ f (u, x)). Note that

p(y |u, x) ∈ [0, 1],
∑
y∈G

p(y |u, x) = 1.

Thus p(y |u, x) can be interpreted as a probability transition from
x to y , under the control u.
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Space discretization

For v ∈ L∞(G), the discrete DP-mapping is defined by

Tτ,hv(x) = inf
u∈U

(
τ`(u, x) + (1− λτ)[v ](x + τ f (u, x))

)
= inf

u∈U

(
τ`(u, x) + (1− λτ)

∑
y∈G

p(y |u, x)v(y)
)
.

It is still well-defined and Lipschitz with modulus (1− λτ), for the
uniform norm.

Remarks.

From now on: we only use p(y |u, x), which contains both the
interpolation map and the discretization of the ODE.

The index h > 0 will be used to describe the quality of the
space discretization.
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Space-discretization

Further remarks.

We still need to manipulate elements of L∞(G), impossible
since G is infinite. Further domain restriction to be applied,
we do not discuss this aspect.

The practical computation of the infimum in Tτ,h may be
difficult. Typically, p(y |u, x) is non-differentiable. Extreme
solution: discretization of U, minimization by enumeration.

Curse of dimensionality.

card
(
B(0,R) ∩ hZn

)
= O

(
(
R

h
)n
)
.

→ Exponential complexity with respect to the dimension n.
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Space discretization

Interpretation of the fixed point equation:

Vτ,h = Tτ,hVτ,h, Vτ,h ∈ L∞(G).

Notation: L∞(N× G;U) is the set of functions from N× G to U.
Given u ∈ L∞(N× G;U), let Y [u, x ] denote the Markov chain
defined by

P
[
Y [u, x ](k + 1) = y ′

∣∣∣Y [u, x ](k) = y
]

= p
(
y ′|u(k , y), y

)
Y [u, x ](0) = x .

In words:

At time k , if the Markov chain is equal to y , the control
u(k , y) is employed.

The probability to move to y ′ is given by p
(
y ′|u(k , y), y

)
.
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Space-discretization

Cost function:

Wτ,h(u, x) = E
[
τ

∞∑
k=0

(1− λτ)k`
(
u(k ,Y (k)),Y (k)

)]
,

where Y = Y [u, x ].

Lemma 6

The unique solution Vτ,h to the fixed-point equation

Vτ,h = Tτ,hVτ,h

is the value function of the following problem:

Vτ,h(x) = inf
u∈L∞(N×G;U)

Wτ,h(u, x). (Pτ,h)
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The analysis can be (again!) summarized with a commutative
diagram:

Problem P(x)
Discretization−−−−−−−−−→ Problem Pτ,h(x)∣∣ ∣∣

Dynamic Prog. Dynamic Prog.y y
V = T V Discretization−−−−−−−−−→ Vτ,h = Tτ,hVτ,h

The “discretization” and “dynamic programming” phases
commute.
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Value iteration

Value iteration algorithm.

Input: v0 : G → R.

For k = 0, 1, ...,K , do

vk+1 = Tτ,h vk .

Output: vK .

Lemma 7

The sequence (vk)k=0,1,... converges linearly to Vτ,h for the
supremum norm. More precisely:

‖vk − Vτ,h‖L∞(G) ≤ (1− λτ)k‖v0 − Vτ,h‖.

Proof: by induction. Recall that Tτ,h is (1− λτ)-Lipschitz.
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Policy iteration

Definition 8

Let L∞(G,U) denote the set of mappings from G to U. We call
any element u ∈ L∞(G,U) a policy.

Key idea. Split the fixed equation v = Tτ,hv into a coupled system
of equations:

v(x) = τ`(u(x), x) + (1− λτ)
∑

y∈G p(y |u(x), x)v(x) (i)

u(x) ∈ argmin
α∈U

τ`(α, x) + (1− λτ)
∑

y∈G p(y |α, x)v(x) (ii)

involving v ∈ L∞(G) and u ∈ L∞(G,U).
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Policy iteration

Remarks.

For a given policy u ∈ L∞(G,U), equation (i) is a linear
fixed-point equation with respect to v . It can be written in
the abstract form

v = T u
τ,hv ,

where Tτ,h : L∞(G)→ L∞(G) is (1− λτ)-Lipschitz-continuous
for the supremum norm.

For a given v ∈ L∞(G), there exists a policy u ∈ L∞(G,U)
satisfying (ii).
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Policy iteration

Policy iteration method.

Input: u0 ∈ L∞(G,U).

For k = 0, 1, ...K , do

Solve vk+1 = T uk
τ,hvk+1.

Update the policy: find uk+1 such that for all x ∈ G,

uk+1(x) ∈ argmin
α∈U

(
τ`(α, x) + (1− λτ)

∑
y∈G

p(y |α, x)vk+1(x)
)
.

Output: vK and uK .
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Goal

Context. Let Vτ,h denote the solution to the fixed point equation

Vτ,h = Tτ,hVτ,h,

where

Tτ,hv(x) = inf
u∈U

(
τ`(u, x) + (1− λτ)

∑
y∈G

p(y |u, x)v(y)
)
.

A specific transition mapping p : G × U × Rn → [0, 1] has been
previously constructed, we consider now a general mapping.

Goal of the section: to compare Vτ,h with the value function of
the original problem V .
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Assumptions

Assumptions: there exists C > 0 such that ∀x ∈ Rn, ∀u ∈ U,∑
y∈G p(y |u, x) = 1, (A1)∥∥∥∑y∈G p(y |u, x)y − (x + f (u, x)τ)

∥∥∥ ≤ Cτ2 (A2)∑
y∈G p(y |u, x) ‖y − (x + f (u, x)τ)‖2 ≤ Ch2. (A3)

Interpretation:

Assumption (A2) says that∑
y∈Gp(y |u, x)y ≈ x + f (u, x)τ.

Assumption (A3) says that in this approximation formula, grid
points close to x + f (u, x)τ should be employed...

...it is also a bound on the “randomness” of the Markov chain.
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Main result

Theorem 9

Assume that V is Lipschitz continuous and that assumptions
(A1)-(A3) hold true. Then, there exists a constant C ′ > 0,
independent of (τ, h,G), depending on C, such that

|Vτ,h(x)− V (x)| ≤ C ′
( h2

τ3/2
+ τ1/2

)
.

Remarks.

Lipschitz continuity is guaranteed if λ > Lf . Extensions of the
theorem do exist when V is only Hölderian.

Appropriate to choose τ = h, bound: 2C ′h1/2.

In the proof, we make use of a constant C whose value can
be updated from line to line. It is independent of τ , h, and
ε (to appear later).
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Proof

Proof. Step 1: decoupling of the variables. Our goal is to find an
upper bound of

δ := sup
x∈G

(
Vτ,h(x)− V (x)

)
and a lower bound of

δ′ := inf
x∈G

(
Vτ,h(x)− V (x)

)
.

In this proof, we will only explain how to bound (from above) δ.
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Proof

The key idea is to start with:

δ = sup
x∈G

(
Vτ,h(x)− V (x)

)
≤ sup

x∈G
y∈Rn

Ψε(x , y) :=
(
Vτ,h(x)− V (y)− ‖x − y‖2

ε

)
,

where ε ∈ (0, 1] is arbitrary.

Proof of the inequality: take x = y .

Small deterioration since for ε > 0 very small, the optimal x
and y are close to each other.
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Proof

Simplifying assumption: there exists a pair (x0, y0) ∈ G × Rn,
depending on ε, which maximizes Ψε.

[If this was not the case, an arbitrarily small modification of Ψε could be

done, so that the assumption holds true; we do not detail this aspect.]

We have:

δ ≤Vτ,h(x0)− V (y0)− ‖y0 − x0‖2

ε
≤ Vτ,h(x0)− V (y0).

We look for an upper bound of Vτ,h(x0) and a lower bound of
V (y0).
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Proof

Step 2: estimate of ‖y0 − x0‖. The inequality

Ψε(x0, x0) ≤ Ψε(x0, y0),

yields

Vτ,h(x0)− V (x0)− ‖x0 − x0‖2

ε
≤ Vτ,h(x0)− V (y0)− ‖y0 − x0‖2

ε
.

Re-arranging:

‖y0 − x0‖2 ≤ ε(V (x0)− V (y0)) ≤ Cε‖y0 − x0‖,

since V is Lipschitz. Thus,

‖y0 − x0‖ ≤ Cε.
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Proof

Step 2: estimate of ‖y0 − x0‖. The inequality

Ψε(x0, x0) ≤ Ψε(x0, y0),

yields

−V (x0) ≤ −V (y0)− ‖y0 − x0‖2

ε
.

Re-arranging:

‖y0 − x0‖2 ≤ ε(V (x0)− V (y0)) ≤ Cε‖y0 − x0‖,

since V is Lipschitz. Thus,

‖y0 − x0‖ ≤ Cε.
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Proof

Step 3: lower bound of V (y0).
Let Φ: Rn → R be defined by

Φ(y) = −‖y − x0‖2

ε
.

Since y0 maximizes Ψε(x0, ·), we have for any y ∈ Rn:

Ψε(x0, y) ≤ Ψε(x0, y0)
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Proof

Step 3: lower bound of V (y0).
Let Φ: Rn → R be defined by

Φ(y) = −‖y − x0‖2

ε
.

Since y0 maximizes Ψε(x0, ·), we have for any y ∈ Rn:

Vτ,h(x0)− V (y)− ‖x0 − y‖2

ε
≤ Vτ,h(x0)− V (y0)− ‖x0 − y0‖2

ε
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Proof

Step 3: lower bound of V (y0).
Let Φ: Rn → R be defined by

Φ(y) = −‖y − x0‖2

ε
.

Since y0 maximizes Ψε(x0, ·), we have for any y ∈ Rn:

−V (y) + Φ(y) ≤ −V (y0) + Φ(y0)
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Proof

Step 3: lower bound of V (y0).
Let Φ: Rn → R be defined by

Φ(y) = −‖y − x0‖2

ε
.

Since y0 maximizes Ψε(x0, ·), we have for any y ∈ Rn:

V (y)− Φ(y) ≥ V (y0)− Φ(y0)

Thus V − Φ has a global minimizer in y0.
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Proof

Let us set

p0 = ∇Φ(y0) =
2(x0 − y0)

ε
.

Since V is a supersolution of the HJB equation, we have

λV (y0)−H(y0, p0) ≥ 0.

Denote by u0 ∈ U the control minimizing the pre-Hamiltonian in
H(·, y0, p0), we have:

λV (y0) ≥ H(y0, p0) = `(u0, y0) + 〈p0, f (u0, y0)〉. (1)
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Proof

Step 4: upper bound for Vτ,h(x0). We use the dynamic
programming principle. We have:

Vτ,h(x0) ≤ τ`(u0, x0) + (1− λτ)
∑
y∈G

p(y |u0, x0)Vτ,h(y). (2)

We next bound Vτ,h(y). We have: Ψε(y , y0) ≤ Ψε(x0, y0), which
yields

Vτ,h(y)− V (y0)− ‖y − y0‖2

ε
≤ Vτ,h(x0)− V (y0)− ‖x0 − y0‖2

ε
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Proof

Step 4: upper bound for Vτ,h(x0). We use the dynamic
programming principle. We have:

Vτ,h(x0) ≤ τ`(u0, x0) + (1− λτ)
∑
y∈G

p(y |u0, x0)Vτ,h(y). (2)

We next bound Vτ,h(y). We have: Ψε(y , y0) ≤ Ψε(x0, y0), which
yields

Vτ,h(y) ≤ Vτ,h(x0) +
‖y − y0‖2 − ‖x0 − y0‖2

ε
. (3)

We next re-arrange the term ‖y − y0‖2 − ‖x0 − y0‖2.
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Proof

We have:

‖y − y0‖2 − ‖x0 − y0‖2 = 2〈y − x0, x0 − y0〉+ ‖y − x0‖2

= 2〈y − (x0 + f (u0, x0)τ), x0 − y0〉
+ 2〈f (u0, x0)τ, x0 − y0〉
+ ‖y − x0‖2. (4)

Injecting (4) in (3) and then (3) in (2), we get:

Vτ,h(x0) ≤ `(u0, x0)τ + (1− λτ)(Vτ,h(x0) + a1 + a2 + a3), (5)

where the three terms a1, a2, and a3 are defined and bounded right
after.



Generalities Discretization Mechanisms Error analysis Variants

Proof

Estimate of (a1). We have

(a1) =
2

ε

∑
y∈G

(
p(y |u0, x0)

〈
y − (x0 + f (u0, x0)τ), x0 − y0

〉)
≤ 2

ε

〈(∑
y∈G

p(y |u0, x0)y
)
− (x0 + f (u0, x0)τ), x0 − y0

〉
≤ 2

ε

∥∥∥(∑
y∈G

p(y |u0, x0)y
)
− (x0 + f (u0, x0)τ)

∥∥∥ · ‖x0 − y0‖

≤ 2

ε
(Cτ2)(Cε)

= Cτ2,

by Assumption (A2).



Generalities Discretization Mechanisms Error analysis Variants

Proof

Estimate of (a2). We have

(a2) =
2

ε

∑
y∈G

p(y |u0, x0)〈f (u0, x0)τ, x0 − y0〉

=
2

ε
〈f (u0, x0), x0 − y0〉τ

= 〈f (u0, x0), p0〉τ .
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Proof

Estimate of (a3). We have

(a3) =
1

ε

∑
y∈G

p(y |u0, x0)‖y − x0‖2

≤ 2

ε

∑
y∈G

p(y |u0, x0)
(
‖y − (x0 + f (u0, x0)τ)‖2 + ‖f (u0, y0)τ‖2

)
≤ C

h2 + τ2

ε
,

by Assumption (A3).
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Proof

Let us combine (5) with the three obtained bouds:

Vτ,h(x0) ≤ `(u0, x0)τ + (1− λτ)Vτ,h(x0)

+ (1− λτ)〈f (u0, x0), p0〉τ
+ (1− λτ)Cτ2

+ (1− λτ)C
(h2 + τ2

ε

)
.

Re-arranging and dividing by τ :

λVτ,h(x0) ≤ `(u0, x0) + 〈f (u0, x0), p0〉+ C
(
τ +

h2 + τ2

ετ

)
. (6)
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Proof

Let us combine (5) with the three obtained bouds:

Vτ,h(x0) ≤ `(u0, x0)τ + (1− λτ)Vτ,h(x0)

+ 〈f (u0, x0), p0〉τ
+ Cτ2

+ C
(h2 + τ2

ε

)
.

Re-arranging and dividing by τ :

λVτ,h(x0) ≤ `(u0, x0) + 〈f (u0, x0), p0〉+ C
(
τ +

h2 + τ2

ετ

)
. (6)
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Proof

Step 5. Conclusion.
Let recall the three main inequalities obtained so far:

δ ≤ Vτ,h(x0)− V (y0),

λV (y0) ≥ `(u0, y0) + 〈f (u0, y0), p0〉

λVτ,h(x0) ≤ `(u0, x0) + 〈f (u0, x0), p0〉+ C
(
τ +

h2 + τ2

ετ

)
.
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Proof

We deduce that

λVτ (x0)− λV (y0) ≤ `(u0, x0)− `(u0, y0) + 〈f (u0, x0)− f (u0, y0), p0〉

+ C
(
τ +

h2 + τ2

ετ

)
≤ C‖x0 − y0‖+ C

(
τ +

h2 + τ2

ετ

)
≤ C

(
ε+ τ +

h2 + τ2

ετ

)
.

Choosing ε = τ1/2, we finally obtain

δ ≤ Vτ (x0)−V (y0) ≤ C

λ

(
τ1/2 + τ +

h2 + τ2

τ3/2

)
≤ C

(
τ1/2 +

h2

τ3/2

)
.
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Variants

In this section: two techniques from the machine-learning
community, in relation with optimal control.

Neural networks

Q-learning.

Reference

D. Bertsekas. Reinforcement learning and optimal control.
Athena scientific, July 2019.



Generalities Discretization Mechanisms Error analysis Variants

Neural networks

A general problem. Let V : Rn → R.

Consider a finite subset G = {y1, ..., yK} of Rn.

Assume that Vk := V (yk) is known for all k = 1, ...,N.

Knowing V1,...,Vk , can we find a function v̄ which “faithfully”
represents V ?

This question is not clearly formulated at a mathematical
level... but it arises in the numerical resolution of every
problem that involve functions of one or several real numbers
(PDEs, infinite-dimensional optimization, etc.)

Interpolation is an answer.
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Neural networks

A general approach. Fix a set V of “suitable” functions and chose
v̄ as a solution to the least-square problem:

min
v∈V

K∑
k=1

|v(yk)− Vk |2.

If V is convex, then the optimization problem is convex; one can
hope to solve it globally.

A typical choice: V is a finite-dimensional vector space.
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Neural networks

Parametric functions. Most of the time, V is given in a
parametric form. Let R be a set of parameters and let
W : Rn × R → R be known explicitely. Then one can define:

V =
{
v | ∃r ∈ R, v(x) = W (x , r)

}
=
{
W (·, r) | r ∈ R

}
.

If R is convex and W affine with respect to r , then V is convex.

The least square problem is then equivalent to:

min
r∈R

K∑
k=1

|W (yk , r)− Vk |2.

For a solution r̄ , define v̄ = W (·, r̄).
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Neural networks

Example:

W (x , r) =
K∑

k=1

µ(yk , x)rk ,

where µ is an interpolation map.

The trivial solution to the least-square problem is rk = Vk .
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Neural network

A neural network is a specific parametric function, described by:

Number of layers: I

Number of hidden units: d1,...,dI−1.

Activation function ϕ : R→ R.

Many popular choices for ϕ. We define d0 = n and dI = 1.

Notation.

Given k , let ϕk : Rk → Rk be defined by

ϕk(x) = (ϕ(x1), ϕ(x2), ..., ϕ(xk)).

Given β ∈ Rk and w ∈ Rk×l , let φβ,w : Rl → Rk be defined by

φβ,w (x) = ϕk(β + wx).
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Neural network

We consider the parametric function:

W (x , r) = βI + wI

(
φβI−1,wI−1

◦ ... ◦ φβ2,w2 ◦ φβ1,w1(x)
)
,

where

r = (β1, β2, ..., βI ,w1,w2, ...,wI ) ∈ R,

where: R =
( I∏

i=1

Rdi
)
×
( I∏

i=1

Rdi×di−1

)
.
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Q-learning

Recall the (discrete) dynamic programing equation:

V (x) = inf
u∈U

(
τ`(u, x) + β

∑
y∈G

p(y |u, x)V (y)
)
,

with β = (1− λτ) ∈ (0, 1). We skip the indices τ and h.

A new decoupling, involving V : G → R and a Q-function
Q : U × G → R: Q(u, x) = τ`(u, x) + β

∑
y∈G p(y |u, x)V (y) (i)

V (x) = inf
u∈U

Q(u, x). (ii)

As before, one can design a fixed point mechanism based on:

Q
(ii)−−→ V

(i)−→ Q.
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Q-learning

We focus on the equation (i) and assume now that U is finite.
Let U, X, and Y be three random variables in U × G × G. We
assume that for all (y , u, x),

P
[
Y = y |U = u, X = x

]
= p(y |u, x).

Let µ(u, x) = P
[
(X,U) = (x , u)

]
. Given φ : U × G × G → R, we

have
E
[
φ(U,X)

]
=

∑
(u,x)∈U×G

φ(u, x)ξ(u, x).
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Q-learning

For any function φ : G × U × G → R, we have:

E
[
φ(X,U,Y)

]
=

∑
(y ,u,x)∈U×G

φ(x , u, y)p(y |u, x)ξ(u, x).

Lemma 10

Let (u, x) ∈ U × G. Let v : G → R. The unique solution to the
following problem

inf
w∈R

∑
y∈G

p(y |u, x)(v(y)− w)2

is given by

w =
∑
y∈G

p(y |u, x)v(y).
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Q-learning

We can now reformulate equation (i).

Q(u, x) = τ`(u, x) + β
∑
y∈G

p(y |u, x)V (y)

=
∑
y∈G

p(y |u, x)
(
τ`(u, x) + βV (y)

)
= argmin

q∈R

∑
y∈G

p(y |u, x)
(
τ`(u, x) + βV (y)− q

)2
.

Let Q denote the set of “suitable” Q-functions. For solving (i), we
can consider the optimization problem:

inf
Q∈Q

∑
(u,x)∈U×G

∑
y∈G

(
τ`(u, x) + βV (y)− Q(u, x)

)2
p(y |u, x)µ(u, x).
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Q-learning

Equivalently:

inf
Q∈Q

E
[(
τ`(U,X ) + βV (Y )− Q(U,X )

)2]
.

The problem can be sampled. Consider a “black box” which can
simulate K outcomes of the random variable (Y,U,X), denoted
(yk , uk , xk)k=1,...,K , as well as `k = `(uk , xk).

An approximation of the problem is:

inf
Q∈Q

K∑
k=1

[(
τ`k + βV (yk)− Q(uk , xk)

)2]
.
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Q-learning

Last remarks!

This is a model-free approach: the knowledge of ` and p is
transfered to the black box.

In the iterative algorithm, V only needs to be evaluated at the
points yk .

Recent application: various board games, video games,
automotive driving, etc.
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