Optimal Control of Ordinary Differential Equations SOD 311

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Ensta-Paris Paris-Saclay University

Ínría

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lecture 3: Model Predictive Control

- An adaptive numerical method for solving long-horizon optimal control problems.
- Stability and quantitative analysis of the method for stabilization problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following references are related to the lecture:

- Nonlinear Model Predictive Control: Theory and Algorithms, by Lars Grüne and Jürgen Pannek, 2011.
- Slides by Lars Grüne on "Deterministic Stabilizing and Economic Model Predictive Control", from the 2022 MTNS Conference.

ふして 前 (山田)(山田) (山下) (山下)

Consider the optimal control problem:

$$\inf_{\substack{y \in W^{1,\infty}(0,\infty;\mathbb{R}^n) \\ u \in L^{\infty}(0,\infty;U)}} \int_0^{\infty} \ell(u(t), y(t)) dt, \quad \text{s.t.} \begin{cases} \dot{y}(t) = f(u(t), y(t)), \\ y(0) = x, \end{cases}$$

$$(\mathcal{P}_{\infty}(x))$$
in which $U, \ell: U \times \mathbb{R}^n \to \mathbb{R}$, and $f: U \times \mathbb{R}^n \to \mathbb{R}^n$ are given and fixed. The initial condition x is seen as a parameter.

Given $y_0 \in \mathbb{R}^n$, we want to solve the problem for $x = y_0$. Issues:

- Difficult to solve such a problem on an infinite (or extremely large) horizon.

The **dynamic programming principle** plays a key role in the treatment of those difficulties.

• Let (\bar{y}, \bar{u}) be a solution to $\mathcal{P}_{\infty}(x)$ for $x = y_0$. Let $\theta > 0$.

• Define
$$\tilde{y} = \bar{y}_{|[\theta,\infty)}$$
, $\tilde{u} = \bar{u}_{|[\theta,\infty)}$. Then (\tilde{y}, \tilde{u}) is a solution to

$$\inf_{\substack{y \in W^{1,\infty}(\theta,\infty;\mathbb{R}^n) \\ u \in L^{\infty}(\theta,\infty;U)}} \int_{\theta}^{\infty} \ell(u(t), y(t)) dt, \quad \text{s.t.} \begin{cases} \dot{y}(t) = f(u(t), y(t)), \\ y(\theta) = \bar{y}(\theta). \end{cases}$$

Define \hat{y} and \hat{u} by $\hat{y}(t) = \tilde{y}(t-\theta)$ and $\hat{y}(t) = \tilde{y}(t-\theta)$. Then (\hat{y}, \hat{u}) is a solution to $\mathcal{P}_{\infty}(\bar{y}(\theta))$. Dynamic programming motivates the following algorithm, for solving $\mathcal{P}_{\infty}(x)$ with $x = y_0$ and taking into account possible perturbations.

Fix $\tau > 0$. At every time $t = k\tau$, $k \in \mathbb{N}$, a **measurement** of the state is realized.

- Find a solution (\bar{y}, \bar{u}) to $\mathcal{P}_{\infty}(x)$, with $x = y_0$.
- Implement $u(t) = \overline{u}(t)$, for a.e. $t \in (0, \tau)$.
- Measure the value of the state at time τ , call it y_1 .
- Find a solution (\bar{y}, \bar{u}) to $\mathcal{P}_{\infty}(x)$, with $x = y_1$.
- Implement $u(t) = \overline{u}(t \tau)$, for a.e. $t \in (\tau, 2\tau)$.
- Measure the value of the state at time 2τ , call it y_2 .

And so on.

This approach already raises many questions!

- Benefit with respect to uncertainties in the model or perturbations ?
- Delay in the measurement and in the computation of a solution to $\mathcal{P}_{\infty}(x)$?

We do not address them directly in the lecture.

In practice, it is not reasonable to assume that $\mathcal{P}_{\infty}(x)$ is solvable instantaneously at each time $k\tau$. Instead, a **truncated** version of it is solved \rightarrow source of error.

Objective: We want to analyze the impact of truncation in the ideal case without model uncertainty or perturbations.

Model Predictive Control (MPC) is a numerical method which provides an approximate solution by solving a sequence of short horizon problems.

Parameters of the method:

- A sampling time $\tau > 0$.
- A prediction horizon $T = N\tau$, where $N \in \mathbb{N}^*$.

Consider the finite-horizon problem:

$$\inf_{\substack{y \in W^{1,\infty}(0,T;\mathbb{R}^n) \\ u \in L^{\infty}(0,T;U)}} \int_0^T \ell(u(t), y(t)) dt, \quad \text{s.t.} \begin{cases} \dot{y}(t) = f(u(t), y(t)), \\ y(0) = x. \end{cases}$$
$$(\mathcal{P}_T(x))$$

The MPC method generates a pair (y_{MPC} , u_{MPC}) iteratively. At iteration k, the pair is defined for $t \in [k\tau, (k+1)\tau]$.

MPC method

Set $y_{MPC}(0) = y_0$. For k = 0, ..., do

- Find a solution (\bar{y}, \bar{u}) of $\mathcal{P}_T(x)$, with $x = y_{MPC}(k\tau)$.
- Set $y_{\text{MPC}}(k\tau + t) = \overline{y}(t)$, $u_{\text{MPC}}(k\tau + t) = \overline{u}(t)$, $\forall t \in [0, \tau]$.

Remarks:

- Can be implemented in real time, assuming P_T(x) can be solved instantaneously.
- Intuition: replacing ∞ by T, we neglect the far future. Acceptable since we only utilize the solutions on [0, τ].

Problem \mathcal{P} can be put in the form:

$$\inf_{\substack{\tilde{y}\in\tilde{Y}^{\mathbb{N}}\\\tilde{u}\in\tilde{U}^{\mathbb{N}}}}\sum_{k=0}^{N}\tilde{\ell}(\tilde{u}(k),\tilde{y}(k)), \quad \text{s.t.} \begin{cases} \forall k=0,\ldots\\ \tilde{y}(k+1)=\tilde{f}(\tilde{u}(k),\tilde{y}(k))\\ \tilde{y}(0)=y_0. \end{cases}$$

Similarly, problem $\mathcal{P}_{\mathcal{T}}(x)$ can be put in the form:

$$\inf_{\substack{\tilde{y}\in\tilde{Y}^{N+1}\\\tilde{u}\in\tilde{U}^{N}}}\sum_{k=0}^{N-1}\ell(\tilde{u}(k),\tilde{y}(k)), \quad \text{s.t.} \begin{cases} \forall k=0,...,N-1,\\ \tilde{y}(k+1)=\tilde{f}(\tilde{u}(k),\tilde{y}(k)),\\ \tilde{y}(0)=x. \end{cases}$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

In this context, the MPC method reads:

Set $\tilde{y}_{MPC}(0) = y_0$. For k = 0, ..., do

- Find a solution (\tilde{y}, \tilde{u}) of $\mathcal{P}_T(x)$, with $x = \tilde{y}_{MPC}(k)$.
- Define $\tilde{y}_{MPC}(k+1) = \tilde{y}(1)$ and $\tilde{u}_{MPC}(k) = \tilde{u}(0)$.

We stick to this **discrete-time framework** and forget about the original continuous-time motivation.

ふして 前 (山田)(山田) (山下) (山下)

We introduce now the general setting utilized in the rest of the lecture.

Data of the problem:

- a set Y: the state space
- a set U: the control space
- a subset $\mathbb{Y} \subseteq Y$: the set of feasible states
- a multivalued map $\mathbb{U} \colon y \in \mathbb{Y} \mapsto \mathbb{U}(y) \subseteq U$
- a dynamics $f: U \times Y \to Y$
- a running cost $\ell \colon U \times Y \to \mathbb{R}$.

For the moment, we only require that $\ell(u, y) \ge 0$, for any $(u, y) \in U \times Y$.

Feasible controls

- Given $n \in \mathbb{N} \cup \{\infty\}$, we call control sequence (of length n) any $u = (u(k))_{k=0,...,n-1} \in U^n$.
- Given an initial condition x ∈ 𝔅, we call associated trajectory y[u, x] = (y[u, x](k))_{k=0,...,n} ∈ Yⁿ⁺¹ the solution to

 $y[u,x](k+1) = f(y[u,x](k),u(k)), \quad \forall k = 0,...n-1$ y[u,x](0) = x.

■ Given *x* ∈ 𝒱, we define the set of **feasible infinite control sequence**

$$\mathbb{U}^{\infty}(x) = \left\{ u \in U^{\infty} \mid \begin{array}{cc} y[u,x](k) \in \mathbb{Y}, & \forall k \in \mathbb{N}, \\ u(k) \in \mathbb{U}(y[u,x](k)), & \forall k \in \mathbb{N} \end{array} \right\}.$$

■ Given an initial condition x and a control sequence (u(k))_{k=0,1,...} ∈ U[∞], we consider the **cost**

$$J_{\infty}(u,x) = \sum_{k=0}^{\infty} \ell(u(k), y[u,x](k)) \in \mathbb{R} \cup \{\infty\}.$$

Note that J_{∞} can be infinite.

• The optimal control problem of interest is:

$$\inf_{u\in\mathbb{U}^{\infty}(x)} J_{\infty}(u,x). \qquad (\mathcal{P}_{\infty}(x))$$

We restrict ourselves to **stabilization problems**: we assume the existence of a pair (y^*, u^*) such that: $y^* \in \mathbb{Y}$, $u^* \in \mathbb{U}(y^*)$, and

$$y^* = f(u^*, y^*)$$

 $\ell(u, y) = 0 \iff (u, y) = (u^*, y^*), \quad \forall (u, y) \in U \times Y.$

In this framework, the cost function J_{∞} steers the state to y^* . If $y_0 = y^*$, then the solution to \mathcal{P} is the constant sequence \bar{u} equal to u^* , since \bar{u} is feasible and $J_{\infty}(\bar{u}, y^*) = 0$.

MPC method

The MPC method requires:

- a time horizon $N \in \mathbb{N}$
- a terminal set $\mathbb{Y}_0 \subseteq \mathbb{Y}$
- a terminal cost $F \colon \mathbb{Y}_0 \to \mathbb{R}_+$.

Given $x \in \mathbb{Y}$, we denote

$$\mathbb{U}^{N}(x) = \left\{ u \in U^{N} \mid \begin{array}{c} y[u,x](k) \in \mathbb{Y}, & \forall k = 0, \dots, N-1 \\ u(k) \in \mathbb{U}(y[u,x](k)), & \forall k = 0, \dots, N-1 \\ y[u,x](N) \in \mathbb{Y}_{0} \end{array} \right\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For any $N \in \mathbb{N} \cup \{\infty\}$, we consider the set of **feasible initial** conditions (for $\mathcal{P}_N(x)$): $\mathbb{Y}_N = \left\{ x \in \mathbb{Y} \mid \mathbb{U}^N(x) \neq \emptyset \right\}$.

Moreover, given $u \in \mathbb{U}^N(x)$, we define

$$J_{N}(u,x) = \left(\sum_{k=0}^{N-1} \ell(u(k), y[u,x](k))\right) + F(y[u,x](N)).$$

The finite-horizon problem utilized in the MPC method is:

$$\inf_{u\in\mathbb{U}^N(x)}J_N(u,x).$$
 ($\mathcal{P}_N(x)$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The MPC method essentially consists in computing a **feedback** function $\mu_N \colon \mathbb{Y} \to U$ in the following fashion: for any $x \in \mathbb{Y}_N$,

- Find a solution \overline{u} to $\mathcal{P}_N(x)$.
- Set $\mu_N(x) = \bar{u}(0)$.

Then the pair (u_{MPC}, y_{MPC}) is recursively defined by:

$$\begin{cases} y_{MPC}(0) = y_0, \\ u_{MPC}(k) = \mu_N(y_{MPC}(k)), & \forall k = 0, 1, \dots \\ y_{MPC}(k+1) = f(u_{MPC}(k), y_{MPC}(k)), & \forall k = 0, 1, \dots \end{cases}$$

Equivalently, $y_{MPC}(k + 1) = f_N(y_{MPC}(k))$, where f_N is defined by

 $f_N(x) = f(\mu_N(x), x).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma 1

Assume that for any $x \in \mathbb{Y}_0$, there exists $u \in \mathbb{U}(x)$ such that $f(u, x) \in \mathbb{Y}_0$. Then

$$\mathbb{Y}_{N} \subseteq \mathbb{Y}_{N+1} \subseteq ... \subseteq \mathbb{Y}_{\infty}.$$

Moreover, for any $x \in \mathbb{Y}_N$, it holds that

$$f_N(x) = f(\mu_N(x), x) \in \mathbb{Y}_N.$$

Remark: under the assumption of the lemma, if $\mathcal{P}_N(x)$ is feasible in the first step of the method, then it is for all other steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The issues related to the existence of a solution to all optimization problems is eluded here. It can be addressed with standard arguments.

We will investigate:

- the qualitative behavior of MPC
 - \rightarrow convergence of y_{MPC} to y^* ?
- the **quantitative** behavior of MPC \rightarrow bound of $J_{\infty}(u_{MPC}, x)$?

ふして 前 (山田)(山田) (山下) (山下)

We forget about the MPC method introduced before and focus on discrete-time dynamical systems of the form

y(0) = x, y(k+1) = g(y(k)), $\forall k = 0, 1, ...$

for a given initial condition $x \in Y$ and $g: Y \to Y$. We denote the solution by $(y[x](k))_{k=0,1,...}$.

- We fix an **equilibrium point** y^* of the dynamics g, that is to say, we assume that $y^* = g(y^*)$.
- We investigate here the convergence of y[x](k) to y*. To this purpose we assume that 𝔅 is metric space and we denote the distance of an arbitrary point y ∈ Y to y* by |y|.

Comparison functions

Definition 2

We define here several classes of functions:

$$\mathcal{K} = \left\{ \alpha \colon [0,\infty) \to [0,\infty) \mid \begin{array}{l} \alpha \text{ is continuous} \\ \alpha \text{ is strictly increasing} \\ \alpha(0) = 0 \end{array} \right\}$$

$$\mathcal{K}_{\infty} = \left\{ \alpha \in \mathcal{K} \mid \alpha(r) \xrightarrow[r \to \infty]{} \infty \right\}$$

$$\mathcal{L} = \left\{ \delta \colon \mathbb{N} \to [0,\infty) \mid \begin{array}{l} \delta \text{ is strictly decreasing} \\ \delta(t) \xrightarrow[t \to \infty]{} 0 \end{array} \right\}$$

$$\mathcal{K}\mathcal{L} = \left\{ \beta \colon [0,\infty) \times \mathbb{N} \to \mathbb{R} \mid \begin{array}{l} \beta(\cdot,t) \in \mathcal{K}, \ \forall t \in \mathbb{N} \\ \beta(r,\cdot) \in \mathcal{L}, \ \forall r \in [0,\infty) \end{array} \right\}.$$

Remark: the *t* variable in the definition of \mathcal{L} and \mathcal{KL} is usually supposed to lie in \mathbb{R} in the literature.

Definition 3

We say that y^* is **asymptotically stable** if there exists $\beta \in \mathcal{KL}$ such that for any $x \in \mathbb{Y}$,

 $|y[x](k)| \leq \beta(|x|, k), \quad \forall k \in \mathbb{N}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remark: this implies that $|y[x](k)| \rightarrow 0$ as $k \rightarrow \infty$ (not an equivalence).

Definition 4

We call $V: Y \to [0,\infty)$ a Lyapunov function (associated with g) if

• there exists α_1 and $\alpha_2 \in \mathcal{K}_\infty$ such that

 $lpha_1(|y|) \leq V(y) \leq lpha_2(|y|), \quad \forall y \in Y$

• there exists $\alpha_3 \in \mathcal{K}$ such that

 $V(g(y)) \leq V(y) - \alpha_3(|y|), \quad \forall y \in Y.$

Remark: if V is a Lyapunov function, then $V(y) \ge 0$, for any $y \in Y$. Moreover, $V(y) = 0 \iff y = y^*$ and y^* is the unique equilibrium.

Theorem 5

Assume the existence of a Lyapunov function. Then y^* is asymptotically stable.

Our **objective** for the rest of the lecture: constructing a Lyapunov function for the dynamic system

$$y(k+1) = f_N(y(k)) = f(\mu_N(y(k)), y(k))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

corresponding to the MPC method.

ふして 前 (山田)(山田) (山下) (山下)

Value function

For $N \in \mathbb{N} \cup \{\infty\}$, the value function $V_N \colon Y \to \mathbb{R} \cup \{\infty\}$ is defined by:

$$V_N(x) = \inf_{u \in \mathbb{U}^N(x)} J_N(u, x).$$

We set $V_N(x) = +\infty$ if $x \notin \mathbb{Y}_N$ (i.e. $\mathbb{U}^N(x)$ is empty).

Theorem 6

For $N \geq 1$ (possibly $N = \infty$), we have

$$V_N(x) = \inf_{u \in \mathbb{U}(x)} \ell(u, x) + V_{N-1}(f(u, x)), \quad \forall x \in \mathbb{Y}.$$
 (DP)

For N = 0, it holds that

$$V_0(x) = \left\{egin{array}{cc} F(x) & ext{if } x \in \mathbb{Y}_0 \ \infty & ext{otherwise.} \end{array}
ight.$$

Corollary 7

Let $N \ge 1$ (possibly $N = \infty$). Let $x \in \mathbb{Y}_N$.

• Let \bar{u} be a solution to $\mathcal{P}_N(x)$. Then $\bar{u}(0)$ is a solution to (DP). Define $u' \in U^{\infty}$ by $u'(k) = \bar{u}(k+1)$. Then u' is a solution to $\mathcal{P}_{N-1}(f(u, x))$.

In particular, $\mu_N(x)$ is a solution to (DP).

• Let u be a solution to (DP). Let u' be a solution to $\mathcal{P}_{N-1}(f(u,x))$. Define $\overline{u} \in U^{\infty}$ by

$$ar{u}(0)=u, \quad ar{u}(k+1)=u'(k), \quad orall k\in\mathbb{N}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Then \bar{u} is a solution to $\mathcal{P}_N(x)$.

A key consequence of the dynamic programming principle is the following:

 $V_{N-1}(f_N(x)) = V_N(x) - \ell(\mu_N(x), x), \quad \forall x \in \mathbb{Y}_N.$

Observation: this relation is close to the decay condition satisfied by Lyapunov functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Can we find **structural assumptions** allowing to use V_N as a Lyapunov function?

Theorem 8

1 Assume that there exists $\alpha \in (0, 1]$ such that

 $V_N(f_N(x)) \le V_N(x) - \alpha \ell(\mu_N(x), x), \quad \forall x \in \mathbb{Y}_N.$ (ADP)

Then the control generated by the MPC method satisfies

 $J_{\infty}(u_{MPC}^{N}(x), x) \leq V_{N}(x)/\alpha.$

2 Assume moreover that there exist α_2 and α_3 in \mathcal{K}_{∞} such that

 $V_N(x) \leq lpha_2(|x|)$ and $\inf_{u \in \mathbb{U}(x)} \ell(u, x) \geq lpha_3(|x|), \quad \forall x \in \mathbb{Y}_N.$

Then y^* is asymptotically stable, for the dynamical system $y(k+1) = f_N(y(k))$.

The previous result relies on **non-explicit assumptions**, which remain to be established (under more explicit assumptions...).

We focus on the verification of the **ADP inequality** (for "approximate dynamic programming").

We distinguish two cases:

■ MPC without terminal cost and terminal constraints: 𝒱₀ = 𝒱 and *F* = 0.

• MPC with terminal cost and constraints.

Each of these two cases requires specific assumptions.

ふして 前 (山田)(山田) (山下) (山下)

Assumption 1

There exists a map $\kappa \colon \mathbb{Y}_0 \to U$ satisfying, for any $x \in \mathbb{Y}_0$,

•
$$\kappa(x) \in \mathbb{U}(x)$$
 and $f(\kappa(x), x) \in \mathbb{Y}_0$

•
$$F(f(\kappa(x), x)) \leq F(x) - \ell(\kappa(x), x).$$

Remarks.

- This assumption is in particular satisfied for 𝒱₀ = {y*}, with κ(y*) = u* and F = 0. But the resolution of 𝒫_N(x) is difficult.
- In general, good candidates for F are approximations of V_{∞} obtained through linearization techniques.

Lemma 9

Under Assumption 1, we have

 $V_0(x) \ge \ldots \ge V_{N-1}(x) \ge V_N(x) \ge \ldots V_\infty(x).$

In particular, $\mathbb{Y}_0 \subseteq \ldots \subseteq \mathbb{Y}_{N-1} \subseteq \mathbb{Y}_N \subseteq \ldots \mathbb{Y}_{\infty}$.

Corollary 10

Under Assumption 1, V_N satisfies (ADP) with $\alpha = 1$. Therefore

 $J_{\infty}(u_{MPC}^{N}(x), x) \leq V_{N}(x), \quad \forall x \in \mathbb{Y}_{N}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The analysis is relatively easy and natural.
- Computation of suitable \mathbb{Y}_0 and F is more complex.
- Resolution of $\mathcal{P}_N(x)$ possibly difficult.
- Given a feasible initial condition $x \in \mathbb{Y}_{\infty}$, one possibly needs to have N quite large so that $x \in \mathbb{Y}_N$.
- No general bound on $V_N(x)$ (in comparison with $V_{\infty}(x)$, yet convergence (w.r.t. N can be achieved).

ふして 前 (山田)(山田) (山下) (山下)

Result

For any
$$x \in \mathbb{Y}$$
, we denote $\ell^*(x) = \inf_{u \in \mathbb{U}(x)} \ell(u, x)$.

Assumption 2

- There is no terminal condition: $\mathbb{Y}_0 = \mathbb{Y}$ and F = 0.
- There exists $\gamma > 0$ such that

$$V_N(x) \leq \gamma \ell^*(x), \quad \forall x \in \mathbb{Y}, \ \forall N \in \mathbb{N}.$$

• There exist α_3 and $\alpha_4 \in \mathcal{K}_{\infty}$ such that

$$\alpha_3(|x|) \leq \ell^*(x) \leq \alpha_4(|x|).$$

Lemma 11

Under Assumption 2, the ADP ineq. is satisfied for any $N \ge 1$ with

$$\alpha_N = 1 - \gamma(\gamma - 1)/(N - 1).$$

- Resolution of $\mathcal{P}_N(x)$ easier without terminal condition (used in practice).
- The method also requires N to be sufficiently large (so that $\alpha_N > 0$).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Refinement are possible (i.e. sharper estimates of α_N on coefficients γ which depend on N).
- Proof of existence of γ doable on a case-by-case basis.