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Lecture 3:
Model Predictive Control

An adaptive numerical method for solving long-horizon
optimal control problems.

Stability and quantitative analysis of the method for
stabilization problems.
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A continuous-time problem

Consider the optimal control problem:

inf
y∈W 1,∞(0,∞;Rn)
u∈L∞(0,∞;U)

∫ ∞
0

`(u(t), y(t)) dt, s.t.

{
ẏ(t) = f (u(t), y(t)),

y(0) = x ,

(P∞(x))
in which U, ` : U × Rn → R, and f : U × Rn → Rn are given and
fixed. The initial condition x is seen as a parameter.

Given y0 ∈ Rn, we want to solve the problem for x = y0. Issues:

Difficult to solve such a problem on an infinite (or extremely
large) horizon.

Sometimes, finding an optimal pair (ȳ , ū) is insufficient
because of perturbations or model uncertainties.



Dynamic programming

The dynamic programming principle plays a key role in the
treatment of those difficulties.

Let (ȳ , ū) be a solution to P∞(x) for x = y0. Let θ > 0.

Define ỹ = ȳ|[θ,∞), ũ = ū|[θ,∞). Then (ỹ , ũ) is a solution to

inf
y∈W 1,∞(θ,∞;Rn)
u∈L∞(θ,∞;U)

∫ ∞
θ

`(u(t), y(t)) dt, s.t.

{
ẏ(t) = f (u(t), y(t)),

y(θ) = ȳ(θ).

Define ŷ and û by ŷ(t) = ỹ(t − θ) and ŷ(t) = ỹ(t − θ).

Then (ŷ , û) is a solution to P∞(ȳ(θ)).



Towards MPC

Dynamic programming motivates the following algorithm, for
solving P∞(x) with x = y0 and taking into account possible
perturbations.

Fix τ > 0. At every time t = kτ , k ∈ N, a measurement of the
state is realized.

Find a solution (ȳ , ū) to P∞(x), with x = y0.

Implement u(t) = ū(t), for a.e. t ∈ (0, τ).

Measure the value of the state at time τ , call it y1.

Find a solution (ȳ , ū) to P∞(x), with x = y1.

Implement u(t) = ū(t − τ), for a.e. t ∈ (τ, 2τ).

Measure the value of the state at time 2τ , call it y2.

And so on.



Towards MPC

This approach already raises many questions!

Benefit with respect to uncertainties in the model or
perturbations ?

Delay in the measurement and in the computation of a
solution to P∞(x) ?

We do not address them directly in the lecture.

In practice, it is not reasonable to assume that P∞(x) is solvable
instantaneously at each time kτ . Instead, a truncated version of it
is solved → source of error.

Objective: We want to analyze the impact of truncation in the
ideal case without model uncertainty or perturbations.



Finite-horizon approximation

Model Predictive Control (MPC) is a numerical method which
provides an approximate solution by solving a sequence of short
horizon problems.

Parameters of the method:

A sampling time τ > 0.

A prediction horizon T = Nτ , where N ∈ N∗.

Consider the finite-horizon problem:

inf
y∈W 1,∞(0,T ;Rn)
u∈L∞(0,T ;U)

∫ T

0
`(u(t), y(t)) dt, s.t.

{
ẏ(t) = f (u(t), y(t)),

y(0) = x .

(PT (x))



MPC method

The MPC method generates a pair (yMPC, uMPC) iteratively.
At iteration k , the pair is defined for t ∈ [kτ, (k + 1)τ ].

MPC method

Set yMPC(0) = y0.
For k = 0, ..., do

Find a solution (ȳ , ū) of PT (x), with x = yMPC(kτ).

Set yMPC(kτ + t) = ȳ(t), uMPC(kτ + t) = ū(t), ∀t ∈ [0, τ ].

Remarks:

Can be implemented in real time, assuming PT (x) can be
solved instantaneously.

Intuition: replacing ∞ by T , we neglect the far future.
Acceptable since we only utilize the solutions on [0, τ ].



Discrete-time reformulation

Problem P can be put in the form:

inf
ỹ∈Ỹ N

ũ∈ŨN

N∑
k=0

˜̀(ũ(k), ỹ(k)), s.t.


∀k = 0, ...

ỹ(k + 1) = f̃ (ũ(k), ỹ(k))

ỹ(0) = y0.

Similarly, problem PT (x) can be put in the form:

inf
ỹ∈Ỹ N+1

ũ∈ŨN

N−1∑
k=0

`(ũ(k), ỹ(k)), s.t.


∀k = 0, ...,N − 1,

ỹ(k + 1) = f̃ (ũ(k), ỹ(k)),

ỹ(0) = x .



Discrete-time reformulation

In this context, the MPC method reads:

Set ỹMPC (0) = y0.
For k = 0, ..., do

Find a solution (ỹ , ũ) of PT (x), with x = ỹMPC (k).

Define ỹMPC(k + 1) = ỹ(1) and ũMPC(k) = ũ(0).

We stick to this discrete-time framework and forget about the
original continuous-time motivation.





Data problem

We introduce now the general setting utilized in the rest of the
lecture.

Data of the problem:

a set Y : the state space

a set U: the control space

a subset Y ⊆ Y : the set of feasible states

a multivalued map U : y ∈ Y 7→ U(y) ⊆ U

a dynamics f : U × Y → Y

a running cost ` : U × Y → R.

For the moment, we only require that `(u, y) ≥ 0, for any
(u, y) ∈ U × Y .



Feasible controls

Given n ∈ N ∪ {∞}, we call control sequence (of length n)
any u = (u(k))k=0,...,n−1 ∈ Un.

Given an initial condition x ∈ Y, we call associated
trajectory y [u, x ] = (y [u, x ](k))k=0,...,n ∈ Y n+1 the solution
to

y [u, x ](k + 1) = f (y [u, x ](k), u(k)), ∀k = 0, . . . n − 1

y [u, x ](0) = x .

Given x ∈ Y, we define the set of feasible infinite control
sequence

U∞(x) =

{
u ∈ U∞

∣∣∣ y [u, x ](k) ∈ Y, ∀k ∈ N,
u(k) ∈ U(y [u, x ](k)), ∀k ∈ N

}
.



Optimal control problem

Given an initial condition x and a control sequence
(u(k))k=0,1,... ∈ U∞, we consider the cost

J∞(u, x) =
∞∑
k=0

`(u(k), y [u, x ](k)) ∈ R ∪ {∞}.

Note that J∞ can be infinite.

The optimal control problem of interest is:

inf
u∈U∞(x)

J∞(u, x). (P∞(x))



Stabilization problems

We restrict ourselves to stabilization problems: we assume the
existence of a pair (y∗, u∗) such that: y∗ ∈ Y, u∗ ∈ U(y∗), and

y∗ = f (u∗, y∗)

`(u, y) = 0⇐⇒ (u, y) = (u∗, y∗), ∀(u, y) ∈ U × Y .

In this framework, the cost function J∞ steers the state to y∗.
If y0 = y∗, then the solution to P is the constant sequence ū equal
to u∗, since ū is feasible and J∞(ū, y∗) = 0.



MPC method

The MPC method requires:

a time horizon N ∈ N
a terminal set Y0 ⊆ Y
a terminal cost F : Y0 → R+.

Given x ∈ Y, we denote

UN(x) =

u ∈ UN

∣∣∣∣∣
y [u, x ](k) ∈ Y, ∀k = 0, . . . ,N − 1
u(k) ∈ U(y [u, x ](k)), ∀k = 0, . . . ,N − 1
y [u, x ](N) ∈ Y0

 .

For any N ∈ N ∪ {∞}, we consider the set of feasible initial

conditions (for PN(x)): YN =
{
x ∈ Y

∣∣UN(x) 6= ∅
}
.



MPC method

Moreover, given u ∈ UN(x), we define

JN(u, x) =

(
N−1∑
k=0

`(u(k), y [u, x ](k))

)
+ F (y [u, x ](N)).

The finite-horizon problem utilized in the MPC method is:

inf
u∈UN(x)

JN(u, x). (PN(x))



Introduction

The MPC method essentially consists in computing a feedback
function µN : Y→ U in the following fashion: for any x ∈ YN ,

Find a solution ū to PN(x).

Set µN(x) = ū(0).

Then the pair (uMPC, yMPC) is recursively defined by:
yMPC(0) = y0,

uMPC(k) = µN(yMPC (k)), ∀k = 0, 1, . . .

yMPC(k + 1) = f (uMPC(k), yMPC(k)), ∀k = 0, 1, . . .

Equivalently, yMPC(k + 1) = fN(yMPC(k)), where fN is defined by

fN(x) = f (µN(x), x).



Viability

Lemma 1

Assume that for any x ∈ Y0, there exists u ∈ U(x) such that
f (u, x) ∈ Y0. Then

YN ⊆ YN+1 ⊆ ... ⊆ Y∞.

Moreover, for any x ∈ YN , it holds that

fN(x) = f (µN(x), x) ∈ YN .

Remark: under the assumption of the lemma, if PN(x) is feasible
in the first step of the method, then it is for all other steps.



Objectives

The issues related to the existence of a solution to all optimization
problems is eluded here. It can be addressed with standard
arguments.

We will investigate:

the qualitative behavior of MPC
→ convergence of yMPC to y∗?

the quantitative behavior of MPC
→ bound of J∞(uMPC, x)?





Stability analysis

We forget about the MPC method introduced before and
focus on discrete-time dynamical systems of the form

y(0) = x , y(k + 1) = g(y(k)), ∀k = 0, 1, . . .

for a given initial condition x ∈ Y and g : Y → Y . We denote
the solution by (y [x ](k))k=0,1,....

We fix an equilibrium point y∗ of the dynamics g , that is to
say, we assume that y∗ = g(y∗).

We investigate here the convergence of y [x ](k) to y∗. To
this purpose we assume that Y is metric space and we denote
the distance of an arbitrary point y ∈ Y to y∗ by |y |.



Comparison functions

Definition 2

We define here several classes of functions:

K =

{
α : [0,∞)→ [0,∞)

∣∣∣∣∣
α is continuous
α is strictly increasing
α(0) = 0

}

K∞ =
{
α ∈ K

∣∣α(r) −→
r→∞

∞
}

L =

{
δ : N→ [0,∞)

∣∣∣ δ is strictly decreasing
δ(t) −→

t→∞
0

}

KL =

{
β : [0,∞)× N→ R

∣∣∣ β(·, t) ∈ K, ∀t ∈ N
β(r , ·) ∈ L, ∀r ∈ [0,∞)

}
.

Remark: the t variable in the definition of L and KL is usually
supposed to lie in R in the literature.



Asymptotic stability

Definition 3

We say that y∗ is asymptotically stable if there exists β ∈ KL
such that for any x ∈ Y,

|y [x ](k)| ≤ β(|x |, k), ∀k ∈ N.

Remark: this implies that |y [x ](k)| → 0 as k →∞ (not an
equivalence).



Lyapunov functions

Definition 4

We call V : Y → [0,∞) a Lyapunov function (associated with g)
if

there exists α1 and α2 ∈ K∞ such that

α1(|y |) ≤ V (y) ≤ α2(|y |), ∀y ∈ Y

there exists α3 ∈ K such that

V (g(y)) ≤ V (y)− α3(|y |), ∀y ∈ Y .

Remark: if V is a Lyapunov function, then V (y) ≥ 0, for any
y ∈ Y . Moreover, V (y) = 0⇐⇒ y = y∗ and y∗ is the unique
equilibrium.



Stability under Lyapunov

Theorem 5

Assume the existence of a Lyapunov function. Then y∗ is
asymptotically stable.

Our objective for the rest of the lecture: constructing a Lyapunov
function for the dynamic system

y(k + 1) = fN(y(k)) = f (µN(y(k)), y(k))

corresponding to the MPC method.





Value function

For N ∈ N ∪ {∞}, the value function VN : Y → R ∪ {∞} is
defined by:

VN(x) = inf
u∈UN(x)

JN(u, x).

We set VN(x) = +∞ if x /∈ YN (i.e. UN(x) is empty).

Theorem 6

For N ≥ 1 (possibly N =∞), we have

VN(x) = inf
u∈U(x)

`(u, x) + VN−1(f (u, x)), ∀x ∈ Y. (DP)

For N = 0, it holds that

V0(x) =

{
F (x) if x ∈ Y0

∞ otherwise.



Dynamic programming

Corollary 7

Let N ≥ 1 (possibly N =∞). Let x ∈ YN .

Let ū be a solution to PN(x). Then ū(0) is a solution to
(DP). Define u′ ∈ U∞ by u′(k) = ū(k + 1). Then u′ is a
solution to PN−1(f (u, x)).

In particular, µN(x) is a solution to (DP).

Let u be a solution to (DP). Let u′ be a solution to
PN−1(f (u, x)). Define ū ∈ U∞ by

ū(0) = u, ū(k + 1) = u′(k), ∀k ∈ N.

Then ū is a solution to PN(x).



From DP to Lyapunov

A key consequence of the dynamic programming principle is the
following:

VN−1(fN(x)) = VN(x)− `(µN(x), x), ∀x ∈ YN .

Observation: this relation is close to the decay condition satisfied
by Lyapunov functions.

Can we find structural assumptions allowing to use VN as a
Lyapunov function?



An abstract result

Theorem 8

1 Assume that there exists α ∈ (0, 1] such that

VN(fN(x)) ≤ VN(x)− α`(µN(x), x), ∀x ∈ YN . (ADP)

Then the control generated by the MPC method satisfies

J∞(uNMPC (x), x) ≤ VN(x)/α.

2 Assume moreover that there exist α2 and α3 in K∞ such that

VN(x) ≤ α2(|x |) and inf
u∈U(x)

`(u, x) ≥ α3(|x |), ∀x ∈ YN .

Then y∗ is asymptotically stable, for the dynamical system
y(k + 1) = fN(y(k)).



Methodology

The previous result relies on non-explicit assumptions, which
remain to be established (under more explicit assumptions...).

We focus on the verification of the ADP inequality (for
“approximate dynamic programming”).

We distinguish two cases:

MPC without terminal cost and terminal constraints: Y0 = Y
and F = 0.

MPC with terminal cost and constraints.

Each of these two cases requires specific assumptions.





Assumption

Assumption 1

There exists a map κ : Y0 → U satisfying, for any x ∈ Y0,

κ(x) ∈ U(x) and f (κ(x), x) ∈ Y0

F (f (κ(x), x)) ≤ F (x)− `(κ(x), x).

Remarks.

This assumption is in particular satisfied for Y0 = {y∗}, with
κ(y∗) = u∗ and F = 0. But the resolution of PN(x) is
difficult.

In general, good candidates for F are approximations of V∞
obtained through linearization techniques.



Result

Lemma 9

Under Assumption 1, we have

V0(x) ≥ . . . ≥ VN−1(x) ≥ VN(x) ≥ . . .V∞(x).

In particular, Y0 ⊆ . . . ⊆ YN−1 ⊆ YN ⊆ . . .Y∞.

Corollary 10

Under Assumption 1, VN satisfies (ADP) with α = 1. Therefore

J∞(uNMPC (x), x) ≤ VN(x), ∀x ∈ YN .



Discussion

The analysis is relatively easy and natural.

Computation of suitable Y0 and F is more complex.

Resolution of PN(x) possibly difficult.

Given a feasible initial condition x ∈ Y∞, one possibly needs
to have N quite large so that x ∈ YN .

No general bound on VN(x) (in comparison with V∞(x), yet
convergence (w.r.t. N can be achieved).





Result

For any x ∈ Y, we denote `∗(x) = infu∈U(x) `(u, x).

Assumption 2

There is no terminal condition: Y0 = Y and F = 0.

There exists γ > 0 such that

VN(x) ≤ γ`∗(x), ∀x ∈ Y, ∀N ∈ N.

There exist α3 and α4 ∈ K∞ such that

α3(|x |) ≤ `∗(x) ≤ α4(|x |).

Lemma 11

Under Assumption 2, the ADP ineq. is satisfied for any N ≥ 1 with

αN = 1− γ(γ − 1)/(N − 1).



Discussion

Resolution of PN(x) easier without terminal condition (used
in practice).

The method also requires N to be sufficiently large (so that
αN > 0).

Refinement are possible (i.e. sharper estimates of αN on
coefficients γ which depend on N).

Proof of existence of γ doable on a case-by-case basis.


