Optimal Control of Ordinary Differential
Equations

Laurent Pfeiffer
Inria and CentraleSupélec, Université Paris-Saclay

Vd
. lrveia—
Ensta-Paris
Paris-Saclay University (.,: .
% université

CentraleSupélec | PARIS-SACLAY



Lecture 3:
Model Predictive Control

m An adaptive numerical method for solving long-horizon
optimal control problems.

m Stability and quantitative analysis of the method for
stabilization problems.
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Continuous-time setting

Model Predictive Control (MPC) primarily aims at solving
infinite-horizon problem of the form:

s J(t) = F(u(e), (1)
inf [ o). o) at {y(o):yo.

These problems are difficult to handle numerically.

Basic idea: solve iteratively a sequence of optimal control
problems on small time horizons.
Two parameters:

m a sampling time 7

m a prediction horizon T.
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The method

At iteration kK = 0, do:
m Find a solution (&, y) to

ot [ o). /(0) {Y(t):

(u,y)

m Define (upmpc(t), ympc(t)) = (a(t), y(t)), for all t € (0, 7).
At iteration k =1, do:

m Find a solution (7,¥) to

T+

S AN { y(1) = f( (£), (1))

y(7) = ympc(T).

m Define (umpc(t), ympc(t)) = (a(t), y(t)), for all t € (7, 27).

(uwy) Jr

And so on...
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The method

At the beginning of iteration k, the pair (upmpc, ympc) is defined
on the interval (0, k7).
At iteration k, do:
m Find a solution (7, ¥) to
m [ { y(2) = F(u(). ¥(2)
y

i Jo YOIy e i)

kT

m Define (upmpc(t), ympc(t)) = (a(t), y(t)), for all
t € (kr,(k+1)7).
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Objectives

MPC is not just a numerical method for solving long-horizon
problems...

m it is also a real-time algorithm (assuming the problems of
horizon T can be solved instantaneously)

m it is also a feedback mechanism, useful in the context of
disturbances or model uncertainties.

The lecture aims at developing tools (related to dynamic
programming) for analysing the optimality of the mechanism.
Methodological comments:

m The continuous-time nature of the system does not play any
role, so we will study MPC from the point of view of
discrete-time systems.

m MPC also allows constraints on the control and the state.
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Data problem

We introduce now the general setting utilized in the rest of the
lecture.

Data of the problem:

a set Y: the state space

a set U: the control space

a subset Y C Y: the set of feasible states

a multivalued map U: y € Y — U(y) C U

adynamics f: UX Y = Y

a running cost £: U x Y — R.

For the moment, we only require that ¢(u,y) > 0, for any
(u,y) e UxY.
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Feasible controls

m Given n € NU {oo}, we call control sequence (of length n)
any u = (u(k))kzo,”_7,,_1 e uUn.

m Given an initial condition x € Y, we call associated
trajectory y[u,x] = (y[u, x](k))k=0,..n € Y™ the solution
to

ylu,x](k + 1) = f(y[u, x](k), u(k)), Vk=0,...n—1
y[u, x](0) = x.

m Given x € Y, we define the set of feasible infinite control
sequence

[UOO(X):{ueUOO‘ ylu,x](k) € Y, VkEN,}

) € U(y[u, x](k)), VkeN
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Optimal control problem

m Given an initial condition x and a control sequence
(u(k))k=0.1,.. € U>, we consider the cost

Joo(u,x) =Y £(u(k), y[u, x](k)) € RU{oo}.
k=0

Note that J, can be infinite.

m The optimal control problem of interest is:

i el ) (Pl)
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Stabilization problems

We restrict ourselves to stabilization problems: we assume the
existence of a pair (y*, u*) such that: y* € Y, v* € U(y*), and

y*=f(u",y")
Uu,y) =0« (u,y) = (u*,y"), Y(u,y)eUxY.
In this framework, the cost function J, steers the state to y*.

If yo = y*, then the solution to P is the constant sequence i equal
to u*, since 7 is feasible and J(a,y*) = 0.
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MPC method

The MPC method requires:
m a time horizon N € N
m a terminal set Yo C Y
m a terminal cost F: Yo — R.

Given x € Y, we denote

ylu,x](k) € Y, Vk=0,....,N—1
u(k) € U(y[u, x](k)), Vk=0,...,N—1 }
yl[u,x](N) € Yo

UN(x) = {u e UN

For any N € NU {00}, we consider the set of feasible initial
conditions (for Py(x)): Yy = {x €Y |UN(x) # @}
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MPC method

Moreover, given u € UN(X), we define

N-1
( C(u(k), ylu, x]( ))) + Fly[u, x](N)).
k=0

The finite-horizon problem utilized in the MPC method is:

nf () (Pu(x)
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The MPC method essentially consists in computing a feedback
function ppy: Y — U in the following fashion: for any x € Yy,

m Find a solution & to Py(x).
m Set un(x) = @(0).
Then the pair (umpc, ympc) is recursively defined by:

ympc(0) = yo,
umpc (k) = un(ympc(k)), Vk=0,1,...
ympc(k +1) = f(umpc(k), ympc(k)), Vk=0,1,...

Equivalently, ympc(k + 1) = fn(ympc(k)), where fy is defined by

Pu(x) = F(n(x). %).
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Viability

Assume that for any x € Y, there exists u € U(x) such that
f(u,x) € Yo. Then

Yy € Yyyr €. € Vo

Moreover, for any x € Yy, it holds that

fn(x) = f(pn(x),x) € Y.

Remark: under the assumption of the lemma, if Py(x) is feasible
in the first step of the method, then it is for all other steps.
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Objectives

The issues related to the existence of a solution to all optimization
problems is eluded here. It can be addressed with standard
arguments.

We will investigate:
m the qualitative behavior of MPC
— convergence of yppc to y*7

m the quantitative behavior of MPC
— bound of Js(umpc, x)?
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Stability analysis of dynamical systems
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Stability analysis

m We forget about the MPC method introduced before and
focus on discrete-time dynamical systems of the form

y(0)=x, y(k+1)=g(y(k)), Vk=0,1,...

for a given initial condition x € Y and g: Y — Y. We denote
the solution by (y[x](k))k=01,....

m We fix an equilibrium point y* of the dynamics g, that is to
say, we assume that y* = g(y*).

m We investigate here the convergence of y[x](k) to y*. To
this purpose we assume that Y is metric space and we denote
the distance of an arbitrary point y € Y to y* by |y|.
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Comparison functions

We define here several classes of functions:

« is strictly increasing

« is continuous }
a(0) =0

B C= {a: [0,00) — [0, 00)

] ICoo:{aelC‘a(r) —>oo}

r—o0

5t)—>0

0 is strictly decreasing
mL=1¢6:N—[0,00) ‘

-Kﬁ_{ﬂ [Ooo)xN—HR‘ a0 J € ity i EN }

)€ L, Vr € [0,00)

Remark: the t variable in the definition of £ and KCL is usually
supposed to lie in R in the literature.
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Asymptotic stability

Definition 3

We say that y* is asymptotically stable if there exists 8 € KL
such that for any x € Y,

lyDXI(k)| < B(Ix|, k),  Vk € N.

Remark: this implies that |y[x](k)| — 0 as k — oo (not an
equivalence).
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Lyapunov functions

We call V: Y — [0,00) a Lyapunov function (associated with g)
if

m there exists a1 and ap € K such that

ar(ly) < V(y) < aa(lyl), VyeY

m there exists a3 € K such that

V(g(y)) < V(y) —as(lyl), VyeY.

Remark: if V is a Lyapunov function, then V(y) > 0, for any
y € Y. Moreover, V(y) =0 <=y = y* and y* is the unique
equilibrium.
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Stability under Lyapunov

Assume the existence of a Lyapunov function. Then y* is
asymptotically stable.

Our objective for the rest of the lecture: constructing a Lyapunov
function for the dynamic system

y(k+1) = fn(y(k)) = f(un(y(k)), y (k)

corresponding to the MPC method.
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Dynamic programming



Value function

For N € NU {o0}, the value function Vi : Y — RU {oo} is
defined by:
V, = inf Jy(u,x).
NGO = e In(wx)

We set Viy(x) = +o0 if x ¢ Yy (i.e. UN(x) is empty).

Theorem 6
For N > 1 (possibly N = cc), we have

Vn(x) = ueiIr[}Ex) lu,x)+ Vn_1(f(u,x)), ¥xeY. (DP)

For N = 0, it holds that

Vo(x) F(x) ifxe Yy
X) =
0 o0  otherwise.




Dynamic programming

Corollary 7

Let N > 1 (possibly N = c0). Let x € Yy.

m Let 0 be a solution to Pn(x). Then a(0) is a solution to
(DP). Define ' € U® by u'(k) = d(k +1). Then ' is a
solution to Py_1(f(u, x)).

In particular, pn(x) is a solution to (DP).

m Let u be a solution to (DP). Let u' be a solution to
Pn_1(f(u,x)). Define i € U> by

G0) = u, a(k+1)=d(k), VkeN.

Then @ is a solution to Py(x).




From DP to Lyapunov

A key consequence of the dynamic programming principle is the
following:

VN_1(fN(X)) = VN(X) — E(MN(X),X), Vx € Yy.

Observation: this relation is close to the decay condition satisfied
by Lyapunov functions.

Can we find structural assumptions allowing to use Vjy as a
Lyapunov function?



An abstract result

Assume that there exists o € (0, 1] such that

Vn(fu(x)) < Vin(x) — al(un(x), x), Vx € Yn. (ADP)
Then the control generated by the MPC method satisfies
Jso(uprpc (%), %) < Viy(x)/a.
Assume moreover that there exist ap and as in Ko such that

Vn(x) < ao(|x]) and I{[}E )ﬁ(u,x) > az(|x]), Vx e Yy.
ucU(x

Then y* is asymptotically stable, for the dynamical system
y(k+1) = fn(y(k))-




Methodology

The previous result relies on non-explicit assumptions, which
remain to be established (under more explicit assumptions...).

We focus on the verification of the ADP inequality (for
“approximate dynamic programming” ).

We distinguish two cases:

m MPC without terminal cost and terminal constraints: Yo =Y
and F =0.

m MPC with terminal cost and constraints.

Each of these two cases requires specific assumptions.
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MPC with terminal cost and constraint
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Assumption

There exists a map x: Yo — U satisfying, for any x € Yo,
m k(x) € U(x) and f(k(x),x) € Yo
m F(f(k(x),x)) < F(x) — £(r(x), x).

Remarks.

m This assumption is in particular satisfied for Yo = {y*}, with
k(y*) = u* and F = 0. But the resolution of Py(x) is
difficult.

m In general, good candidates for F are approximations of V,,
obtained through linearization techniques.
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Result

Under Assumption 1, we have
Vo(x) > ... > Vy_1(x) > Vn(x) > ... Vo(x).

In particular, Yo C ... C Yy_1 C Yy C ... Y.

Corollary 10
Under Assumption 1, V) satisfies (ADP) with o = 1. Therefore

Joo(uMpc(x),x) < Vn(x), Vx € Yp.
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Discussion

The analysis is relatively easy and natural.

Computation of suitable Yg and F is more complex.

m Resolution of Py(x) possibly difficult.

m Given a feasible initial condition x € Y, one possibly needs
to have N quite large so that x € Yy.

No general bound on Vj(x) (in comparison with Vi (x), yet
convergence (w.r.t. N can be achieved).
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B MPC without terminal cost and constraint
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Result

For any x € Y, we denote (*(x) = inf cy(y) £(u,x).

m There is no terminal condition: Yo =Y and F = 0.

m There exists v > 0 such that
Vn(x) <0 (x), VxeY, VNeN

m There exist a3 and a4 € K such that

az(|x]) < £*(x) < aa(|x]).

Under Assumption 2, the ADP ineq. is satisfied for any N > 1 with

ay=1-=~(y-1)/(N-1).
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Discussion

m Resolution of Ppy(x) easier without terminal condition (used
in practice).

m The method also requires N to be sufficiently large (so that
oN > 0).

m Refinement are possible (i.e. sharper estimates of ay on
coefficients v which depend on N).

m Proof of existence of < doable on a case-by-case basis.
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