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Lecture 3:
Model Predictive Control

An adaptive numerical method for solving long-horizon
optimal control problems.

Stability and quantitative analysis of the method for
stabilization problems.
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Continuous-time setting

Model Predictive Control (MPC) primarily aims at solving
infinite-horizon problem of the form:

inf
(u,y)

∫ ∞
0

`(u(t), y(t)) dt,

{
ẏ(t) = f (u(t), y(t))

y(0) = y0.

These problems are difficult to handle numerically.

Basic idea: solve iteratively a sequence of optimal control
problems on small time horizons.

Two parameters:

a sampling time τ

a prediction horizon T .
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The method

At iteration k = 0, do:

Find a solution (ū, ȳ) to

inf
(u,y)

∫ T

0
`(u(t), y(t)) dt,

{
ẏ(t) = f (u(t), y(t))

y(0) = y0.

Define (uMPC (t), yMPC (t)) = (ū(t), ȳ(t)), for all t ∈ (0, τ).

At iteration k = 1, do:

Find a solution (ū, ȳ) to

inf
(u,y)

∫ T+τ

τ
`(u(t), y(t)) dt,

{
ẏ(t) = f (u(t), y(t))

y(τ) = yMPC (τ).

Define (uMPC (t), yMPC (t)) = (ū(t), ȳ(t)), for all t ∈ (τ, 2τ).

And so on...
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The method

At the beginning of iteration k, the pair (uMPC , yMPC ) is defined
on the interval (0, kτ).

At iteration k , do:

Find a solution (ū, ȳ) to

inf
(u,y)

∫ T+kτ

kτ
`(u(t), y(t)) dt,

{
ẏ(t) = f (u(t), y(t))

y(kτ) = yMPC (kτ).

Define (uMPC (t), yMPC (t)) = (ū(t), ȳ(t)), for all
t ∈ (kτ, (k + 1)τ).
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Objectives

MPC is not just a numerical method for solving long-horizon
problems...

it is also a real-time algorithm (assuming the problems of
horizon T can be solved instantaneously)

it is also a feedback mechanism, useful in the context of
disturbances or model uncertainties.

The lecture aims at developing tools (related to dynamic
programming) for analysing the optimality of the mechanism.

Methodological comments:

The continuous-time nature of the system does not play any
role, so we will study MPC from the point of view of
discrete-time systems.

MPC also allows constraints on the control and the state.
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Data problem

We introduce now the general setting utilized in the rest of the
lecture.

Data of the problem:

a set Y : the state space

a set U: the control space

a subset Y ⊆ Y : the set of feasible states

a multivalued map U : y ∈ Y 7→ U(y) ⊆ U

a dynamics f : U × Y → Y

a running cost ` : U × Y → R.

For the moment, we only require that `(u, y) ≥ 0, for any
(u, y) ∈ U × Y .
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Feasible controls

Given n ∈ N ∪ {∞}, we call control sequence (of length n)
any u = (u(k))k=0,...,n−1 ∈ Un.

Given an initial condition x ∈ Y, we call associated
trajectory y [u, x ] = (y [u, x ](k))k=0,...,n ∈ Y n+1 the solution
to

y [u, x ](k + 1) = f (y [u, x ](k), u(k)), ∀k = 0, . . . n − 1

y [u, x ](0) = x .

Given x ∈ Y, we define the set of feasible infinite control
sequence

U∞(x) =

{
u ∈ U∞

∣∣∣ y [u, x ](k) ∈ Y, ∀k ∈ N,
u(k) ∈ U(y [u, x ](k)), ∀k ∈ N

}
.
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Optimal control problem

Given an initial condition x and a control sequence
(u(k))k=0,1,... ∈ U∞, we consider the cost

J∞(u, x) =
∞∑
k=0

`(u(k), y [u, x ](k)) ∈ R ∪ {∞}.

Note that J∞ can be infinite.

The optimal control problem of interest is:

inf
u∈U∞(x)

J∞(u, x). (P∞(x))
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Stabilization problems

We restrict ourselves to stabilization problems: we assume the
existence of a pair (y∗, u∗) such that: y∗ ∈ Y, u∗ ∈ U(y∗), and

y∗ = f (u∗, y∗)

`(u, y) = 0⇐⇒ (u, y) = (u∗, y∗), ∀(u, y) ∈ U × Y .

In this framework, the cost function J∞ steers the state to y∗.
If y0 = y∗, then the solution to P is the constant sequence ū equal
to u∗, since ū is feasible and J∞(ū, y∗) = 0.
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MPC method

The MPC method requires:

a time horizon N ∈ N
a terminal set Y0 ⊆ Y
a terminal cost F : Y0 → R+.

Given x ∈ Y, we denote

UN(x) =

u ∈ UN

∣∣∣∣∣
y [u, x ](k) ∈ Y, ∀k = 0, . . . ,N − 1
u(k) ∈ U(y [u, x ](k)), ∀k = 0, . . . ,N − 1
y [u, x ](N) ∈ Y0

 .

For any N ∈ N ∪ {∞}, we consider the set of feasible initial

conditions (for PN(x)): YN =
{
x ∈ Y

∣∣UN(x) 6= ∅
}
.
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MPC method

Moreover, given u ∈ UN(x), we define

JN(u, x) =

(
N−1∑
k=0

`(u(k), y [u, x ](k))

)
+ F (y [u, x ](N)).

The finite-horizon problem utilized in the MPC method is:

inf
u∈UN(x)

JN(u, x). (PN(x))
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Introduction

The MPC method essentially consists in computing a feedback
function µN : Y→ U in the following fashion: for any x ∈ YN ,

Find a solution ū to PN(x).

Set µN(x) = ū(0).

Then the pair (uMPC, yMPC) is recursively defined by:
yMPC(0) = y0,

uMPC(k) = µN(yMPC (k)), ∀k = 0, 1, . . .

yMPC(k + 1) = f (uMPC(k), yMPC(k)), ∀k = 0, 1, . . .

Equivalently, yMPC(k + 1) = fN(yMPC(k)), where fN is defined by

fN(x) = f (µN(x), x).
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Viability

Lemma 1

Assume that for any x ∈ Y0, there exists u ∈ U(x) such that
f (u, x) ∈ Y0. Then

YN ⊆ YN+1 ⊆ ... ⊆ Y∞.

Moreover, for any x ∈ YN , it holds that

fN(x) = f (µN(x), x) ∈ YN .

Remark: under the assumption of the lemma, if PN(x) is feasible
in the first step of the method, then it is for all other steps.
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Objectives

The issues related to the existence of a solution to all optimization
problems is eluded here. It can be addressed with standard
arguments.

We will investigate:

the qualitative behavior of MPC
→ convergence of yMPC to y∗?

the quantitative behavior of MPC
→ bound of J∞(uMPC, x)?
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Stability analysis

We forget about the MPC method introduced before and
focus on discrete-time dynamical systems of the form

y(0) = x , y(k + 1) = g(y(k)), ∀k = 0, 1, . . .

for a given initial condition x ∈ Y and g : Y → Y . We denote
the solution by (y [x ](k))k=0,1,....

We fix an equilibrium point y∗ of the dynamics g , that is to
say, we assume that y∗ = g(y∗).

We investigate here the convergence of y [x ](k) to y∗. To
this purpose we assume that Y is metric space and we denote
the distance of an arbitrary point y ∈ Y to y∗ by |y |.
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Comparison functions

Definition 2

We define here several classes of functions:

K =

{
α : [0,∞)→ [0,∞)

∣∣∣∣∣
α is continuous
α is strictly increasing
α(0) = 0

}

K∞ =
{
α ∈ K

∣∣α(r) −→
r→∞

∞
}

L =

{
δ : N→ [0,∞)

∣∣∣ δ is strictly decreasing
δ(t) −→

t→∞
0

}

KL =

{
β : [0,∞)× N→ R

∣∣∣ β(·, t) ∈ K, ∀t ∈ N
β(r , ·) ∈ L, ∀r ∈ [0,∞)

}
.

Remark: the t variable in the definition of L and KL is usually
supposed to lie in R in the literature.



Introduction General setting Stability Dyn. prog. With terminal cond. Without

Asymptotic stability

Definition 3

We say that y∗ is asymptotically stable if there exists β ∈ KL
such that for any x ∈ Y,

|y [x ](k)| ≤ β(|x |, k), ∀k ∈ N.

Remark: this implies that |y [x ](k)| → 0 as k →∞ (not an
equivalence).
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Lyapunov functions

Definition 4

We call V : Y → [0,∞) a Lyapunov function (associated with g)
if

there exists α1 and α2 ∈ K∞ such that

α1(|y |) ≤ V (y) ≤ α2(|y |), ∀y ∈ Y

there exists α3 ∈ K such that

V (g(y)) ≤ V (y)− α3(|y |), ∀y ∈ Y .

Remark: if V is a Lyapunov function, then V (y) ≥ 0, for any
y ∈ Y . Moreover, V (y) = 0⇐⇒ y = y∗ and y∗ is the unique
equilibrium.



Introduction General setting Stability Dyn. prog. With terminal cond. Without

Stability under Lyapunov

Theorem 5

Assume the existence of a Lyapunov function. Then y∗ is
asymptotically stable.

Our objective for the rest of the lecture: constructing a Lyapunov
function for the dynamic system

y(k + 1) = fN(y(k)) = f (µN(y(k)), y(k))

corresponding to the MPC method.
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Value function

For N ∈ N ∪ {∞}, the value function VN : Y → R ∪ {∞} is
defined by:

VN(x) = inf
u∈UN(x)

JN(u, x).

We set VN(x) = +∞ if x /∈ YN (i.e. UN(x) is empty).

Theorem 6

For N ≥ 1 (possibly N =∞), we have

VN(x) = inf
u∈U(x)

`(u, x) + VN−1(f (u, x)), ∀x ∈ Y. (DP)

For N = 0, it holds that

V0(x) =

{
F (x) if x ∈ Y0

∞ otherwise.
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Dynamic programming

Corollary 7

Let N ≥ 1 (possibly N =∞). Let x ∈ YN .

Let ū be a solution to PN(x). Then ū(0) is a solution to
(DP). Define u′ ∈ U∞ by u′(k) = ū(k + 1). Then u′ is a
solution to PN−1(f (u, x)).

In particular, µN(x) is a solution to (DP).

Let u be a solution to (DP). Let u′ be a solution to
PN−1(f (u, x)). Define ū ∈ U∞ by

ū(0) = u, ū(k + 1) = u′(k), ∀k ∈ N.

Then ū is a solution to PN(x).
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From DP to Lyapunov

A key consequence of the dynamic programming principle is the
following:

VN−1(fN(x)) = VN(x)− `(µN(x), x), ∀x ∈ YN .

Observation: this relation is close to the decay condition satisfied
by Lyapunov functions.

Can we find structural assumptions allowing to use VN as a
Lyapunov function?
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An abstract result

Theorem 8

1 Assume that there exists α ∈ (0, 1] such that

VN(fN(x)) ≤ VN(x)− α`(µN(x), x), ∀x ∈ YN . (ADP)

Then the control generated by the MPC method satisfies

J∞(uNMPC (x), x) ≤ VN(x)/α.

2 Assume moreover that there exist α2 and α3 in K∞ such that

VN(x) ≤ α2(|x |) and inf
u∈U(x)

`(u, x) ≥ α3(|x |), ∀x ∈ YN .

Then y∗ is asymptotically stable, for the dynamical system
y(k + 1) = fN(y(k)).
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Methodology

The previous result relies on non-explicit assumptions, which
remain to be established (under more explicit assumptions...).

We focus on the verification of the ADP inequality (for
“approximate dynamic programming”).

We distinguish two cases:

MPC without terminal cost and terminal constraints: Y0 = Y
and F = 0.

MPC with terminal cost and constraints.

Each of these two cases requires specific assumptions.
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Assumption

Assumption 1

There exists a map κ : Y0 → U satisfying, for any x ∈ Y0,

κ(x) ∈ U(x) and f (κ(x), x) ∈ Y0

F (f (κ(x), x)) ≤ F (x)− `(κ(x), x).

Remarks.

This assumption is in particular satisfied for Y0 = {y∗}, with
κ(y∗) = u∗ and F = 0. But the resolution of PN(x) is
difficult.

In general, good candidates for F are approximations of V∞
obtained through linearization techniques.
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Result

Lemma 9

Under Assumption 1, we have

V0(x) ≥ . . . ≥ VN−1(x) ≥ VN(x) ≥ . . .V∞(x).

In particular, Y0 ⊆ . . . ⊆ YN−1 ⊆ YN ⊆ . . .Y∞.

Corollary 10

Under Assumption 1, VN satisfies (ADP) with α = 1. Therefore

J∞(uNMPC (x), x) ≤ VN(x), ∀x ∈ YN .



Introduction General setting Stability Dyn. prog. With terminal cond. Without

Discussion

The analysis is relatively easy and natural.

Computation of suitable Y0 and F is more complex.

Resolution of PN(x) possibly difficult.

Given a feasible initial condition x ∈ Y∞, one possibly needs
to have N quite large so that x ∈ YN .

No general bound on VN(x) (in comparison with V∞(x), yet
convergence (w.r.t. N can be achieved).
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Result

For any x ∈ Y, we denote `∗(x) = infu∈U(x) `(u, x).

Assumption 2

There is no terminal condition: Y0 = Y and F = 0.

There exists γ > 0 such that

VN(x) ≤ γ`∗(x), ∀x ∈ Y, ∀N ∈ N.

There exist α3 and α4 ∈ K∞ such that

α3(|x |) ≤ `∗(x) ≤ α4(|x |).

Lemma 11

Under Assumption 2, the ADP ineq. is satisfied for any N ≥ 1 with

αN = 1− γ(γ − 1)/(N − 1).
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Discussion

Resolution of PN(x) easier without terminal condition (used
in practice).

The method also requires N to be sufficiently large (so that
αN > 0).

Refinement are possible (i.e. sharper estimates of αN on
coefficients γ which depend on N).

Proof of existence of γ doable on a case-by-case basis.
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