Optimal Control of Ordinary Differential Equations

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

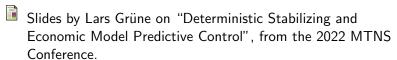
Ensta-Paris
Paris-Saclay University

Lecture 3: Model Predictive Control

- An adaptive numerical method for solving long-horizon optimal control problems.
- Stability and quantitative analysis of the method for stabilization problems.

Bibliography

The following references are related to the lecture:



1 Introduction

Introduction

00000

- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- **5** MPC with terminal cost and constraint
- 6 MPC without terminal cost and constraint

Continuous-time setting

Model Predictive Control (MPC) primarily aims at solving **infinite-horizon** problem of the form:

$$\inf_{(u,y)} \int_0^\infty \ell(u(t),y(t)) dt, \quad \begin{cases} \dot{y}(t) = f(u(t),y(t)) \\ y(0) = y_0. \end{cases}$$

These problems are difficult to handle numerically.

Basic idea: solve iteratively a sequence of optimal control problems on small time horizons.

Two parameters:

- lacksquare a sampling time au
- \blacksquare a prediction horizon T.

The method

At iteration k = 0, do:

Find a solution (\bar{u}, \bar{y}) to

$$\inf_{(u,y)} \int_0^T \ell(u(t),y(t)) dt, \quad \begin{cases} \dot{y}(t) = f(u(t),y(t)) \\ y(0) = y_0. \end{cases}$$

■ Define $(u_{MPC}(t), y_{MPC}(t)) = (\bar{u}(t), \bar{y}(t))$, for all $t \in (0, \tau)$.

At iteration k = 1, do:

■ Find a solution (\bar{u}, \bar{y}) to

$$\inf_{(u,y)} \int_{\tau}^{T+\tau} \ell(u(t),y(t)) dt, \quad \begin{cases} \dot{y}(t) = f(u(t),y(t)) \\ y(\tau) = y_{MPC}(\tau). \end{cases}$$

■ Define $(u_{MPC}(t), y_{MPC}(t)) = (\bar{u}(t), \bar{y}(t))$, for all $t \in (\tau, 2\tau)$.

And so on...

The method

At the beginning of iteration k, the pair (u_{MPC}, y_{MPC}) is defined on the interval $(0, k\tau)$.

At iteration k, do:

■ Find a solution (\bar{u}, \bar{y}) to

$$\inf_{(u,y)} \int_{k\tau}^{T+k\tau} \ell(u(t),y(t)) dt, \quad \begin{cases} \dot{y}(t) = f(u(t),y(t)) \\ y(k\tau) = y_{MPC}(k\tau). \end{cases}$$

■ Define $(u_{MPC}(t), y_{MPC}(t)) = (\bar{u}(t), \bar{y}(t))$, for all $t \in (k\tau, (k+1)\tau)$.

Objectives

MPC is not just a numerical method for solving long-horizon problems...

- it is also a real-time algorithm (assuming the problems of horizon T can be solved instantaneously)
- it is also a feedback mechanism, useful in the context of disturbances or model uncertainties.

The lecture aims at developing tools (related to dynamic programming) for analysing the optimality of the mechanism.

Methodological comments:

- The continuous-time nature of the system does not play any role, so we will study MPC from the point of view of discrete-time systems.
- MPC also allows **constraints** on the control and the state.

- Introduction
- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- 6 MPC without terminal cost and constraint

Data problem

We introduce now the general setting utilized in the rest of the lecture.

Data of the problem:

- a set Y: the state space
- a set *U*: the control space
- **a** a subset $\mathbb{Y} \subseteq Y$: the set of feasible states
- lacksquare a multivalued map $\mathbb{U}\colon y\in\mathbb{Y}\mapsto\mathbb{U}(y)\subseteq U$
- a dynamics $f: U \times Y \rightarrow Y$
- a running cost ℓ : $U \times Y \to \mathbb{R}$.

For the moment, we only require that $\ell(u,y) \geq 0$, for any $(u,y) \in U \times Y$.

Feasible controls

- Given $n \in \mathbb{N} \cup \{\infty\}$, we call **control sequence** (of length n) any $u = (u(k))_{k=0,...,n-1} \in U^n$.
- Given an initial condition $x \in \mathbb{Y}$, we call **associated** trajectory $y[u,x] = (y[u,x](k))_{k=0,...,n} \in Y^{n+1}$ the solution to

$$y[u,x](k+1) = f(y[u,x](k), u(k)), \quad \forall k = 0, \dots n-1$$

 $y[u,x](0) = x.$

■ Given x ∈ Y, we define the set of feasible infinite control sequence

$$\mathbb{U}^{\infty}(x) = \left\{ u \in U^{\infty} \, \middle| \, \begin{array}{l} y[u,x](k) \in \mathbb{Y}, & \forall k \in \mathbb{N}, \\ u(k) \in \mathbb{U}(y[u,x](k)), & \forall k \in \mathbb{N} \end{array} \right\}.$$

Optimal control problem

■ Given an initial condition x and a control sequence $(u(k))_{k=0,1,...} \in U^{\infty}$, we consider the **cost**

$$J_{\infty}(u,x) = \sum_{k=0}^{\infty} \ell(u(k), y[u,x](k)) \in \mathbb{R} \cup \{\infty\}.$$

Note that J_{∞} can be infinite.

■ The **optimal control problem** of interest is:

$$\inf_{u\in\mathbb{U}^{\infty}(x)}J_{\infty}(u,x). \tag{$\mathcal{P}_{\infty}(x)$)}$$

Stabilization problems

We restrict ourselves to **stabilization problems**: we assume the existence of a pair (y^*, u^*) such that: $y^* \in \mathbb{Y}$, $u^* \in \mathbb{U}(y^*)$, and

$$y^* = f(u^*, y^*)$$

$$\ell(u, y) = 0 \iff (u, y) = (u^*, y^*), \quad \forall (u, y) \in U \times Y.$$

In this framework, the cost function J_{∞} steers the state to y^* . If $y_0=y^*$, then the solution to $\mathcal P$ is the constant sequence $\bar u$ equal to u^* , since $\bar u$ is feasible and $J_{\infty}(\bar u,y^*)=0$.

MPC method

The MPC method requires:

- \blacksquare a time horizon $N \in \mathbb{N}$
- lacksquare a terminal set $\mathbb{Y}_0 \subseteq \mathbb{Y}$
- lacksquare a terminal cost $F\colon \mathbb{Y}_0 \to \mathbb{R}_+$.

Given $x \in \mathbb{Y}$, we denote

$$\mathbb{U}^{N}(x) = \left\{ u \in U^{N} \mid \begin{array}{l} y[u,x](k) \in \mathbb{Y}, & \forall k = 0, \dots, N-1 \\ u(k) \in \mathbb{U}(y[u,x](k)), & \forall k = 0, \dots, N-1 \\ y[u,x](N) \in \mathbb{Y}_{0} \end{array} \right\}.$$

For any $N \in \mathbb{N} \cup \{\infty\}$, we consider the set of **feasible initial** conditions (for $\mathcal{P}_N(x)$): $\mathbb{Y}_N = \left\{ x \in \mathbb{Y} \, \middle| \, \mathbb{U}^N(x) \neq \emptyset \right\}$.

MPC method

Moreover, given $u \in \mathbb{U}^N(x)$, we define

$$J_N(u,x) = \left(\sum_{k=0}^{N-1} \ell(u(k), y[u,x](k))\right) + F(y[u,x](N)).$$

The finite-horizon problem utilized in the MPC method is:

$$\inf_{u\in\mathbb{U}^N(x)}J_N(u,x). \tag{$\mathcal{P}_N(x)$)}$$

Introduction

The MPC method essentially consists in computing a **feedback** function $\mu_N \colon \mathbb{Y} \to U$ in the following fashion: for any $x \in \mathbb{Y}_N$,

- Find a solution \bar{u} to $\mathcal{P}_N(x)$.
- Set $\mu_N(x) = \bar{u}(0)$.

Then the pair (u_{MPC}, y_{MPC}) is recursively defined by:

$$\begin{cases} y_{\mathsf{MPC}}(0) = y_0, \\ u_{\mathsf{MPC}}(k) = \mu_{\mathsf{N}}(y_{\mathsf{MPC}}(k)), & \forall k = 0, 1, \dots \\ y_{\mathsf{MPC}}(k+1) = f(u_{\mathsf{MPC}}(k), y_{\mathsf{MPC}}(k)), & \forall k = 0, 1, \dots \end{cases}$$

Equivalently, $y_{MPC}(k+1) = f_N(y_{MPC}(k))$, where f_N is defined by

$$f_N(x) = f(\mu_N(x), x).$$

Viability

Lemma 1

Assume that for any $x \in \mathbb{Y}_0$, there exists $u \in \mathbb{U}(x)$ such that $f(u,x) \in \mathbb{Y}_0$. Then

$$\mathbb{Y}_{N} \subseteq \mathbb{Y}_{N+1} \subseteq ... \subseteq \mathbb{Y}_{\infty}.$$

Moreover, for any $x \in \mathbb{Y}_N$, it holds that

$$f_N(x) = f(\mu_N(x), x) \in \mathbb{Y}_N.$$

Remark: under the assumption of the lemma, if $\mathcal{P}_N(x)$ is feasible in the first step of the method, then it is for all other steps.

Objectives

The issues related to the existence of a solution to all optimization problems is eluded here. It can be addressed with standard arguments.

We will investigate:

- the qualitative behavior of MPC
 - \rightarrow convergence of y_{MPC} to y^* ?
- the quantitative behavior of MPC
 - \rightarrow bound of $J_{\infty}(u_{\text{MPC}},x)$?

- 1 Introduction
- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- 5 MPC with terminal cost and constraint
- 6 MPC without terminal cost and constraint

Stability analysis

 We forget about the MPC method introduced before and focus on discrete-time dynamical systems of the form

$$y(0) = x$$
, $y(k+1) = g(y(k))$, $\forall k = 0, 1, ...$

for a given initial condition $x \in Y$ and $g: Y \to Y$. We denote the solution by $(y[x](k))_{k=0,1,...}$.

- We fix an **equilibrium point** y^* of the dynamics g, that is to say, we assume that $y^* = g(y^*)$.
- We investigate here the **convergence** of y[x](k) to y^* . To this purpose we assume that \mathbb{Y} is metric space and we denote the **distance** of an arbitrary point $y \in Y$ to y^* by |y|.

Comparison functions

Definition 2

We define here several classes of functions:

$$\blacksquare \ \mathcal{K} = \left\{ \alpha \colon [0,\infty) \to [0,\infty) \, \middle| \, \begin{array}{l} \alpha \text{ is continuous} \\ \alpha \text{ is strictly increasing} \\ \alpha(0) = 0 \end{array} \right\}$$

$$\blacksquare \ \mathcal{L} = \left\{ \delta \colon \mathbb{N} \to [0,\infty) \; \middle| \; \begin{array}{l} \delta \text{ is strictly decreasing} \\ \delta(t) \underset{t \to \infty}{\longrightarrow} 0 \end{array} \right\}$$

$$\bullet \ \mathcal{KL} = \left\{ \beta \colon [0,\infty) \times \mathbb{N} \to \mathbb{R} \ \middle| \ \begin{array}{l} \beta(\cdot,t) \in \mathcal{K}, \ \forall t \in \mathbb{N} \\ \beta(r,\cdot) \in \mathcal{L}, \ \forall r \in [0,\infty) \end{array} \right\}.$$

Remark: the t variable in the definition of \mathcal{L} and \mathcal{KL} is usually supposed to lie in \mathbb{R} in the literature. 4 D > 4 B > 4 B > 4 B > 9 Q P

Asymptotic stability

Definition 3

We say that y^* is **asymptotically stable** if there exists $\beta \in \mathcal{KL}$ such that for any $x \in \mathbb{Y}$,

$$|y[x](k)| \le \beta(|x|, k), \quad \forall k \in \mathbb{N}.$$

Remark: this implies that $|y[x](k)| \to 0$ as $k \to \infty$ (not an equivalence).

Lyapunov functions

Definition 4

We call $V \colon Y \to [0, \infty)$ a **Lyapunov function** (associated with g) if

■ there exists α_1 and $\alpha_2 \in \mathcal{K}_{\infty}$ such that

$$\alpha_1(|y|) \le V(y) \le \alpha_2(|y|), \quad \forall y \in Y$$

■ there exists $\alpha_3 \in \mathcal{K}$ such that

$$V(g(y)) \le V(y) - \alpha_3(|y|), \quad \forall y \in Y.$$

Remark: if V is a Lyapunov function, then $V(y) \ge 0$, for any $y \in Y$. Moreover, $V(y) = 0 \iff y = y^*$ and y^* is the unique equilibrium.

Stability under Lyapunov

Theorem 5

Assume the existence of a Lyapunov function. Then y^* is asymptotically stable.

Our **objective** for the rest of the lecture: constructing a Lyapunov function for the dynamic system

$$y(k+1) = f_N(y(k)) = f(\mu_N(y(k)), y(k))$$

corresponding to the MPC method.

- 1 Introduction
- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- MPC with terminal cost and constraint
- 6 MPC without terminal cost and constraint

Value function

For $N \in \mathbb{N} \cup \{\infty\}$, the value function $V_N \colon Y \to \mathbb{R} \cup \{\infty\}$ is defined by:

$$V_N(x) = \inf_{u \in \mathbb{U}^N(x)} J_N(u, x).$$

We set $V_N(x) = +\infty$ if $x \notin \mathbb{Y}_N$ (i.e. $\mathbb{U}^N(x)$ is empty).

Theorem 6

For $N \ge 1$ (possibly $N = \infty$), we have

$$V_N(x) = \inf_{u \in \mathbb{U}(x)} \ell(u, x) + V_{N-1}(f(u, x)), \quad \forall x \in \mathbb{Y}.$$
 (DP)

For N = 0, it holds that

$$V_0(x) = \left\{ egin{array}{ll} F(x) & \textit{if } x \in \mathbb{Y}_0 \ \infty & \textit{otherwise}. \end{array}
ight.$$

Dynamic programming

Corollary 7

Let $N \geq 1$ (possibly $N = \infty$). Let $x \in \mathbb{Y}_N$.

- Let \bar{u} be a solution to $\mathcal{P}_N(x)$. Then $\bar{u}(0)$ is a solution to (DP). Define $u' \in U^{\infty}$ by $u'(k) = \bar{u}(k+1)$. Then u' is a solution to $\mathcal{P}_{N-1}(f(u,x))$.
 - In particular, $\mu_N(x)$ is a solution to (DP).
- Let u be a solution to (DP). Let u' be a solution to $\mathcal{P}_{N-1}(f(u,x))$. Define $\bar{u} \in U^{\infty}$ by

$$\bar{u}(0) = u, \quad \bar{u}(k+1) = u'(k), \quad \forall k \in \mathbb{N}.$$

Then \bar{u} is a solution to $\mathcal{P}_N(x)$.

From DP to Lyapunov

A key consequence of the dynamic programming principle is the following:

$$V_{N-1}(f_N(x)) = V_N(x) - \ell(\mu_N(x), x), \quad \forall x \in \mathbb{Y}_N.$$

Observation: this relation is close to the decay condition satisfied by Lyapunov functions.

Can we find **structural assumptions** allowing to use V_N as a Lyapunov function?

An abstract result

Theorem 8

1 Assume that there exists $\alpha \in (0,1]$ such that

$$V_N(f_N(x)) \le V_N(x) - \alpha \ell(\mu_N(x), x), \quad \forall x \in \mathbb{Y}_N.$$
 (ADP)

Then the control generated by the MPC method satisfies

$$J_{\infty}(u_{MPC}^{N}(x),x) \leq V_{N}(x)/\alpha.$$

2 Assume moreover that there exist α_2 and α_3 in \mathcal{K}_{∞} such that

$$V_N(x) \le \alpha_2(|x|)$$
 and $\inf_{u \in \mathbb{U}(x)} \ell(u, x) \ge \alpha_3(|x|), \quad \forall x \in \mathbb{Y}_N.$

Then y^* is asymptotically stable, for the dynamical system $y(k+1) = f_N(y(k))$.

Methodology

The previous result relies on **non-explicit assumptions**, which remain to be established (under more explicit assumptions...).

We focus on the verification of the **ADP inequality** (for "approximate dynamic programming").

We distinguish two cases:

- MPC without terminal cost and terminal constraints: $\mathbb{Y}_0 = \mathbb{Y}$ and F = 0.
- MPC with terminal cost and constraints.

Each of these two cases requires specific assumptions.

- Introduction
- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- 5 MPC with terminal cost and constraint
- 6 MPC without terminal cost and constraint

Assumption

Assumption 1

There exists a map $\kappa \colon \mathbb{Y}_0 \to U$ satisfying, for any $x \in \mathbb{Y}_0$,

- \bullet $\kappa(x) \in \mathbb{U}(x)$ and $f(\kappa(x), x) \in \mathbb{Y}_0$
- $F(f(\kappa(x),x)) \leq F(x) \ell(\kappa(x),x)$.

Remarks.

- This assumption is in particular satisfied for $\mathbb{Y}_0 = \{y^*\}$, with $\kappa(y^*) = u^*$ and F = 0. But the resolution of $\mathcal{P}_N(x)$ is difficult.
- In general, good candidates for F are approximations of V_{∞} obtained through linearization techniques.

Result

Lemma 9

Under Assumption 1, we have

$$V_0(x) \geq \ldots \geq V_{N-1}(x) \geq V_N(x) \geq \ldots V_{\infty}(x)$$
.

In particular, $\mathbb{Y}_0 \subseteq \ldots \subseteq \mathbb{Y}_{N-1} \subseteq \mathbb{Y}_N \subseteq \ldots \mathbb{Y}_{\infty}$.

Corollary 10

Under Assumption 1, V_N satisfies (ADP) with $\alpha = 1$. Therefore

$$J_{\infty}(u_{MPC}^{N}(x), x) \leq V_{N}(x), \quad \forall x \in \mathbb{Y}_{N}.$$

Discussion

- The analysis is relatively easy and natural.
- Computation of suitable \mathbb{Y}_0 and F is more complex.
- Resolution of $\mathcal{P}_N(x)$ possibly difficult.
- Given a feasible initial condition $x \in \mathbb{Y}_{\infty}$, one possibly needs to have N quite large so that $x \in \mathbb{Y}_{N}$.
- No general bound on $V_N(x)$ (in comparison with $V_\infty(x)$, yet convergence (w.r.t. N can be achieved).

- 1 Introduction
- 2 General setting
- 3 Stability analysis of dynamical systems
- 4 Dynamic programming
- 5 MPC with terminal cost and constraint
- 6 MPC without terminal cost and constraint

Result

Introduction

For any $x \in \mathbb{Y}$, we denote $\ell^*(x) = \inf_{u \in \mathbb{U}(x)} \ell(u, x)$.

Assumption 2

- There is no terminal condition: $\mathbb{Y}_0 = \mathbb{Y}$ and F = 0.
- There exists $\gamma > 0$ such that

$$V_N(x) \le \gamma \ell^*(x), \quad \forall x \in \mathbb{Y}, \ \forall N \in \mathbb{N}.$$

■ There exist α_3 and $\alpha_4 \in \mathcal{K}_{\infty}$ such that

$$\alpha_3(|x|) \le \ell^*(x) \le \alpha_4(|x|).$$

Lemma 11

Under Assumption 2, the ADP ineq. is satisfied for any $N \ge 1$ with

$$\alpha_{N} = 1 - \gamma(\gamma - 1)/(N - 1).$$

000

Discussion

- Resolution of $\mathcal{P}_N(x)$ easier without terminal condition (used in practice).
- The method also requires N to be sufficiently large (so that $\alpha_N > 0$).
- Refinement are possible (i.e. sharper estimates of α_N on coefficients γ which depend on N).
- lacktriangle Proof of existence of γ doable on a case-by-case basis.