Optimal control of ODEs

Exercise sheet

Laurent Pfeiffer, Inria and CentraleSupélec

September 21, 2023

Exercise 1 We consider the following problem:

$$
\inf _{\substack{T \geq 0 \\
y \in W^{1, \infty}\left(0, T ; \mathbb{R}^{2}\right) \\
u \in L^{\infty}(0, T ; \mathbb{R})}} T, \quad \text { subject to }:\left\{\begin{array}{l}
\dot{y}_{1}(t)=u(t) \\
\dot{y}_{2}(t)=-y_{2}(t)+u(t) \\
\left(y_{1}(0), y_{2}(0)\right)=\left(x_{1}, x_{2}\right) \\
\left(y_{1}(T), y_{2}(T)\right)=(0,0) \\
u(t) \in[-1,1],
\end{array}\right.
$$

for a given initial condition $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. We will denote by $y[x, u]$ the solution to the costate equation for a given initial condition x and a given control u.

1. Let us assume the existence of a feasible triplet (T, y, u). Justify that the problem possesses a solution.
2. Let us fix a solution (T, \bar{y}, \bar{u}) to the problem. Write Pontryagin's principle (we denote by $\left(\bar{p}_{1}, \bar{p}_{2}\right)$ the associated costate).
3. Find an explicit expression of $\left(\bar{p}_{1}, \bar{p}_{2}\right)$ in function of $\left(\bar{p}_{1}(T), \bar{p}_{2}(T)\right)$.
4. Prove that \bar{u} is piecewise constant, with at most two pieces, and that $\bar{u}(t) \in\{-1,1\}$ for a.e. $t \in[0, T]$.
5. Find an explicit expression of $y[x, u]$ for u constant equal to 1 and for u constant equal to -1 .
6. Compute the following sets:

$$
\begin{aligned}
& \Gamma_{1}=\left\{x \in \mathbb{R}^{2} \mid \exists T \geq 0, y[x, u=1](T)=(0,0)\right\} \\
& \Gamma_{-1}=\left\{x \in \mathbb{R}^{2} \mid \exists T \geq 0, y[x, u=1](T)=(0,0)\right\}
\end{aligned}
$$

7. On a graph, draw (approximatively) Γ_{1} and Γ_{-1}. Draw the optimal trajectories of the problem for a set of different initial conditions.

Exercise 2 Consider the following optimal control problem:

$$
\inf _{\substack{u \in L^{2}(0,1) \\
y \in H^{1}(0,1)}} \int_{0}^{1} \frac{1}{2} y(t)^{2}+\frac{1}{6} u(t)^{2} \mathrm{~d} t \quad \text { subject to: }\left\{\begin{aligned}
\dot{y}(t) & =y(t)+u(t) \\
y(0) & =1 .
\end{aligned}\right.
$$

1. Calculate the pre-Hamiltonian and its derivatives.
2. Justify the existence of a unique solution to the problem.
3. Write the optimality conditions.
4. Let (y, u) denote the solution, with associated costate p. Let us set

$$
z_{1}(t)=y(t)-p(t) \quad \text { and } \quad z_{2}(t)=y(t)+3 p(t) .
$$

Show that z_{1} and z_{2} are solutions to independent linear differential equations. Compute $z_{1}(t)$ and $z_{2}(t)$ in function of $z_{1}(0)$ and $z_{2}(0)$.
5. Compute y and p in function of $p(0)$.

6 . Formulate the shooting equation and solve it.

