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Exercise 1 We consider the following problem:
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for a given initial condition (z1,7s) € R%. We will denote by y[z, u] the solution to the costate equation for a
given initial condition x and a given control .

1. Let us assume the existence of a feasible triplet (T, y, ). Justify that the problem possesses a solution.

2. Let us fix a solution (7,9, u) to the problem. Write Pontryagin’s principle (we denote by (p1,p2) the
associated costate).

Find an explicit expression of (p1,p2) in function of (p1(T), p2(T)).
Prove that @ is piecewise constant, with at most two pieces, and that u(t) € {—1,1} for a.e. ¢ € [0,T].

Find an explicit expression of y[x, u] for u constant equal to 1 and for u constant equal to —1.
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Compute the following sets:
Iy ={zeR* 3T >0, ylz,u=1)(T) = (0,0)},
Iy ={2zeR?|3IT >0, ylz,u=1)(T) = (0,0)}.

7. On a graph, draw (approximatively) I';y and I'_;. Draw the optimal trajectories of the problem for a set
of different initial conditions.

Exercise 2 Consider the following optimal control problem:

1 .
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1. Calculate the pre-Hamiltonian and its derivatives.

Justify the existence of a unique solution to the problem.

Write the optimality conditions.
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Let (y,u) denote the solution, with associated costate p. Let us set

z(t) =y(t) —p(t) and  2(t) = y(t) + 3p(t).

Show that z; and z are solutions to independent linear differential equations. Compute z;(t) and zo(t)
in function of z;(0) and 23(0).

5. Compute y and p in function of p(0).

6. Formulate the shooting equation and solve it.



