Optimal control of ODEs

Exercise sheet

Laurent Pfeiffer, Inria and CentraleSupélec

September 28, 2023

Exercise 3 We consider the following problem:

$$
\inf _{\substack{u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right) \\
y \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)}} \int_{0}^{T} \frac{1}{2}\langle y(t), W y(t)\rangle+\langle w, y(t)\rangle+\frac{1}{2}\|u(t)\|^{2} \mathrm{~d} t \quad \text { subject to: }\left\{\begin{aligned}
\dot{y}(t) & =A y(t)+B u(t) \\
y(0) & =y_{0}
\end{aligned}\right.
$$

Data: $T>0, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, W \in \mathbb{R}^{n \times n}, w \in \mathbb{R}^{n}, y_{0}$. The matrix W is assumed to be symmetric positive semi-definite. Given $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$, denote $y[u]$ the solution to the state equation. Let us denote by J the cost function of the optimal control problem, obtained after elimination of the state variable y.

We recall two inequalities, useful for this exercise:

$$
a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2} \quad \text { and } \quad(a+b)^{2} \leq 2 a^{2}+2 b^{2}, \quad \forall a \in \mathbb{R}, \quad \forall b \in \mathbb{R}
$$

We recall that there exists a constant $M_{1}>0$ such that for all $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$,

$$
\|y[u]\|_{L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)}^{2} \leq M_{1}\left(\left\|y_{0}\right\|^{2}+\|u\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}\right)
$$

1. Prove the existence of a constant $M_{2}>0$, independent of y_{0} and w such that

$$
J(0) \leq M_{2}\left(\left\|y_{0}\right\|^{2}+\|w\|^{2}\right)
$$

2. Let $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ and let $y=y[u]$. Prove the existence of a constant $M_{3}>0$, depending on T only, such that

$$
J(u) \geq \frac{1}{2}\|u\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2}-\frac{M_{3}}{\varepsilon}\|w\|^{2}-\varepsilon M_{3}\|y\|_{L^{\infty}\left(0, T ; \mathbb{R}^{n}\right)}^{2}, \quad \forall \varepsilon>0
$$

3. Let $u \in L^{2}\left(0, T ; \mathbb{R}^{m}\right)$ be such that $J(u) \leq J(0)$. Prove the existence of $M_{4}>0$, independent of u, y_{0}, and w, such that

$$
\|u\|_{L^{2}\left(0, T ; \mathbb{R}^{m}\right)}^{2} \leq M_{4}\left(\left\|y_{0}\right\|^{2}+\|w\|^{2}\right)
$$

4. Prove the existence and uniqueness of a solution to the problem.

Exercise 4 Consider the optimal control problem under investigation in the lecture on linear quadratic problems. Let $(y, p) \in H^{1}\left(0, T ; \mathbb{R}^{n}\right)^{2}$. Then y is the optimal trajectory and p is the associated costate if and only if (y, p) solves

$$
\begin{array}{rlrl}
\dot{y}(t) & =A y(t)-B B^{\top} p(t) & \dot{p}(t) & =-A^{\top} p(t)-W y(t) \\
y(0) & =y_{0} & p(T) & =K y(T)
\end{array}
$$

We denote by \bar{y} the unique optimal trajectory and by \bar{p} the associated costate.

1. Let $E:[0, T] \rightarrow \mathbb{R}^{n \times n}$ be a continuously differentiable matrix-valued function. Let $r:[0, T] \rightarrow \mathbb{R}^{n}$ be defined by $r(t)=\bar{p}(t)+E(t) \bar{y}(t)$, for any $t \in[0, T]$. Find an expression of \dot{r} involving the problem data, r, \bar{y}, E, and \dot{E} (in other words, an expression of \dot{r} that does not involve p).
2. Now we define E as the solution to the following nonlinear ODE, called Riccati equation:

$$
\begin{aligned}
-\dot{E}(t) & =E(t) A+A^{\top} E(t)-W+E(t) B B^{\top} E(t) \\
E(T) & =-K
\end{aligned}
$$

The existence and uniqueness of the solution to the Riccati equation is assumed here (it is not trivial since the expression $E(t) B B^{\top} E(t)$ is not Lipschitz with respect to $\left.E(t)\right)$. Show that r, as defined in the first item, is null.
3. Propose a method for solving the optimal control problem, relying on the Riccati equation.

